
Ron Brightwell
Scalable System Software

Sandia National Laboratories

Albuquerque, NM, USA

Open Fabrics Alliance International Workshop

Monterey, CA

April 4, 2011

Sandia is a Multiprogram Laboratory Operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energy Under Contract DE-ACO4-94AL85000.

Porting Portals to OFED



Sandia Massively Parallel Systems

Paragon
Tens of users

First periods 

processing MPP

World record 

performance

Routine 3D 

simulations

SUNMOS lightweight 

kernel

ASCI Red
Production MPP

Hundreds of users

Red & Black 

partitions

Improved 

interconnect

High-fidelity coupled 

3-D physics

Puma/Cougar 

lightweight kernel

Cplant
Commodity-based 

supercomputer

Hundreds of users

Enhanced simulation 

capacity

Linux-based OS 

licensed for 

commercialization

~2000 nodes

Red Storm
Prototype Cray XT

Custom interconnect

Purpose built RAS

Highly balanced and 

scalable

Catamount 

lightweight kernel

Currently 38,400 

cores (quad & dual)

nCUBE2
Sandia’s first large 

MPP

Achieved Gflops 

performance on 

applications

1990

1993

1997

1999

2004



Portals Network Programming Interface

• Network API developed by Sandia, U. New Mexico, Intel

• Previous generations of Portals deployed on several production 

massively parallel systems

– 1993: 1800-node Intel Paragon (SUNMOS)

– 1997: 10,000-node Intel ASCI Red (Puma/Cougar)

– 1999: 1800-node Cplant cluster (Linux)

– 2005: 10,000-node Cray Sandia Red Storm (Catamount)

– 2009: 18,688-node Cray XT5 – ORNL Jaguar (Linux)

• Focused on providing

– Lightweight “connectionless” model for MPP systems

– Low latency

– High bandwidth

– Independent progress

– Overlap of computation and communication

– Scalable buffering semantics

• Supports MPI, Cray SHMEM, ARMCI, GASNet, Lustre, etc.



What Makes Portals Different?

• One-sided communication with optional matching

• Provides elementary building blocks for supporting higher-level 

protocols well

• Allows structures to be placed in user-space, kernel-space, or NIC-

space

• Allows for zero-copy, OS-bypass, and application-bypass 

implementations

• Scalable buffering of MPI unexpected messages

• Supports multiple protocols within a process

• Runtime system independent

• Well-defined failure semantics



Portals 4.0:

Applying Lessons Learned from Cray SeaStar

• High message rate

– Atomic search and post for MPI receives required round-trip across PCI

– Eliminate round-trip by having Portals manage unexpected messages

• Flow control

– Encourages well-behaved applications

• Fail fast

• Identify application scalability issues early

– Resource exhaustion caused unrecoverable failure

– Recovery doesn’t have to be fast

– Resource exhaustion will disable Portal

– Subsequent messages will fail with event notification at initiator

– Applies back pressure from network

• Performance for scalable applications

• Correctness for non-scalable applications



Portals 4.0 (cont’d)

• Hardware implementation

– Designed for intelligent or programmable NICs

– Arbitrary list insertion is bad

– Remove unneeded symmetry on initiator and target objects

• New functionality for one-sided operations

– Eliminate matching information

• Smaller network header

• Minimize processing at target

– Scalable event delivery

• Lightweight counting events

– Triggered operations

• Chain sequence of data movement operations

• Build asynchronous collective operations

– Mitigate OS noise effects



Triggered Operations



Put Operation



Matched Get Operation



Unmatched Get Operation



Atomic Operation (Swap)



Atomic Operation (Sum)



Non-Matching Address Translation



Non-Matching Address Translation



Matching Address Translation



Matching Address Translation



NIC Architecture Co-design

• Prevailing architectural constraints have 

driven many applications to highly bursty

communication patterns

• In a power constrained world this trend will 

be unsustainable due to inefficient use of 

the system interconnect

• Design Goal: Produce a NIC architecture 

that enables overlap through high message 

rates and independent progress

• Using simulation, NIC hardware & software and host driver software were 

simultaneously profiled for various architecture choices

• Trade-offs:

– Which architectural features provide performance advantages

– What software bottlenecks need to be moved to hardware

– Which functions can be left to run on NIC CPU or in the host driver

• Next step: rework applications (or portions) to take advantage of the new 

features and provide feedback for more architectural improvements



Network Interface Controller

• Power will be number one constraint for exascale systems

• Current systems waste energy

– Using host cores to process messages is inefficient

– Only move data when necessary

– Move data to final destination

• No intermediate copying due to network

• Specialized network hardware

– Atomic operations

– Match processing

• Addressing and address translation

– Virtual address translation

• Avoid registration cache

– Logical node translation

• Rank translation on a million nodes

• Hardware support for thread activation on message arrival



Match Unit Architecture

Microcode

ALU Register FileTernary Register File

Data Copy

Unit

Permute Input Fifo Unit

Input FIFO

ALUTernary Unit

Predicate Unit

Branch
Unit

Output FIFO

Predicate Register File

Architecture Drivers

• High throughput

– 3 stage pipeline

• Irregular data alignment

– SIMD operation

– Permute units

• Program Consistency

– Forwarding in data path

– Read before write in 

register file



High Message Throughput Challenges

• Off-load approach

– Roadblocks

• Storage requirements on NIC

• NIC embedded processor is worse at list 

management (than the host processor)

– Benefits

• Opportunity to create dedicated hardware

• Macroscale pipelining

• 20M messages per second implies a new message every 50ns

• Significant constraints created by MPI semantics

• On-load approach 

– Roadblocks

• Host general purpose processors are inefficient for list management

• Caching (a cache miss is 70-120ns latency)

– Microbenchmarks are cache friendly, real life is not

– Benefits

• Easier & cheaper
Unexp MsgPosted Receives

ALPU

Processor Bus

H
ea

d
er

P
o
sted

 R
eceiv

e

SRAM SRAM

List

Manager

Match

List

Manager

MatchALPU

Queue Processor



Portals on OFED

• Provides a high-performance reference implementation for 

experimentation

• Help identify issues with API, semantics, performance, etc.

• Independent analysis of the specification



Portals over InfiniBand

www.openfabrics.org 22

Author: Bob Pearson
Date: April 3, 2011



Implementation Details

• Connection Management

• Portals Transport

• Progress Thread

www.openfabrics.org 23



Connection Management

• rdma_cm based

– One listening rdma_cm_id per PID

• NID = IPV4 address of IB interface

• PID = port in RMDA_PS_TCP port space

– Extension to rdma_cm to support XRC QPs

• rdma_create_qp(…, &init_attr);

– Init_attr.xrc_domain new field, if not zero causes rdma_cm to 

create XRC type QP and ignore PD

– rdma_cm internally calls ibv_modify_xrc_qp etc. for xrc QPs

• Exchange XRC SRQ # in CM private data

– Logical NIs => XRC QPs

– Physical NIs => RC QPs

www.openfabrics.org 24



Logical NI

www.openfabrics.org 25

PID1

PID2

PID1

PID2

rQP

rQP

SRQ

SRQ

sQP

sQP

ifac
e

ifac
e

Source Node Destination Node

NI

NI NI

NI



Physical NI

www.openfabrics.org 26

PID1

PID2

PID1

PID2

QP

QP

SRQ

SRQ

QP

QP

ifac
e

ifac
e

Source Node Destination Node

NI

NI NI

NI

QP

QP

QP

QP



Portals Transport

• Transport similar to SRP

– Requester sends message to target

• Three data types for request => target data

– Immediate (up to MAX INLINE DATA)

– DMA (up to MAX INLINE SGE)

– Indirect (up to MAX MESSAGE SIZE)

• Two data types for target => requester data

– DMA

– Indirect

– Target performs all RDMA operations and then 

generates reply message

www.openfabrics.org 27



M/
LE

M/
LE

www.openfabrics.org 28

MD

P
T

M/
LE

REQ

REP

Get

Put/Swap



Progress Thread

• One progress thread per PID

– Handles rdma_cm events

– CQ events

– Async events

• Uses libev as event handler

www.openfabrics.org 29



The code

• Code is located at

code.google.com/p/portals4

www.openfabrics.org 30


