
PSM Tag Matching API

1

Author: Todd Rimmer
Date: April 2011

April 2011

Agenda

• What is PSM?

• How does PSM differ from Verbs?

• PSM Advanced Features

• PSM Performance/Scalability

April 2011 2

What is PSM?

• PSM=Performance Scaled Messaging

• API designed specifically for HPC

– Analyzed needs of various MPI Channel Interfaces

– Designed an API to perfectly match the needs of those Interfaces

• Carefully selected division of responsibility

– MPI handles higher level capabilities

• The wide array of MPI functions, etc

– PSM focused on interconnect specific details

• Data movement strategies and tuning

• Advanced features – QoS, dispersive routing, resiliency, etc

• Implemented as a user space library

PSM is now included in OFED as of 1.5.2
April 2011 3

A Bit of InfiniBand History

• InfiniBand Inception

– Designed for the enterprise

data center market and an

IO paradigm

– Backbone network as a

replacement for Ethernet

and Fibre Channel

– Incorporate best data center

features of all interconnects

and protocols

– Cluster sizes: 100s of nodes

– Performance Req: 1M IOPs

• InfiniBand Finds Its Niche

– High Performance Computing

Clusters market

– Low-Latency / High Bandwidth

advantages

– Primary message paradigm –

MPI

– Cluster sizes: 1000s of nodes

– Performance Req: tens of

millions of messages per second

April 2011 4

Early 2000’s Mid-2000’s

IB Verbs Design Point PSM Design Point

PSM Design Focus

• Focus on the needs of MPI and HPC Compute

• Design for very high HPC messaging rate, scalable latency
– Allow full support of all MPI collective implementations

• Maintain a minimal memory footprint
– No adapter state per connection, no caches in adapter

– Minimal memory footprint per end point

– Scale out to large job size

• Provide the high degree of resiliency needed by HPC
– More sophisticated retry/timeout mechanisms

– More persistence

– (IBTA Verbs limited to 7 retries at fixed timeout interval)

• Overcome weaknesses in IO oriented IB transport
– Out of order packet handling, dispersive send of individual messages, etc

– While interoperating with standard IB link and network layers

• Centralize implementation of sophisticated features
– Allow all MPIs to easily take advantage

April 2011 5

Integration of PSM with Open Fabrics

O
p

e
n

 M
P

I
HCA

Verbs Provider / Driver PSM

M
V

A
P

I
C

H

M
V

A
P

I
C

H
2

P
la

tf
o

r
m

 M
P

I

M
P

I
C

H
2

I
n

te
l
M

P
I

H
P

 M
P

I

Q
L
o

g
ic

 M
P

I

S
H

M
E

M

InfiniBand Wire Transports

OFA ULPs

Applications

MPI Libraries
(Verb-based)

6

G
e
n

e
ri

c
A

d
a
p

te
r

S
p

e
c
if

ic

April 2011

Comparison of Impedance Match

OpenMPI MTL and BTL sizes

• Interfacing to PSM

is comparable to

HPC focused

interconnects

– Such as

Quadrics, Myrinet

• Relative sizes are

similar for other

MPIs

– mvapich,

mvapich2, etc

April 2011 7

Example of using PSM

MPI Receive in OpenMPI 1.4.3
int ompi_mtl_psm_irecv(…)

{

…

mca_mtl_psm_request_t * mtl_psm_request = (mca_mtl_psm_request_t*) mtl_request;

ret = ompi_mtl_datatype_recv_buf(convertor, &mtl_psm_request->buf, &length,

&mtl_psm_request->free_after);

if (OMPI_SUCCESS != ret) return ret;

mtl_psm_request->length = length;

mtl_psm_request->convertor = convertor;

mtl_psm_request->type = OMPI_MTL_PSM_IRECV;

PSM_MAKE_TAGSEL(src, tag, comm->c_contextid, mqtag, tagsel);

err = psm_mq_irecv(ompi_mtl_psm.mq, mqtag, tagsel, 0, mtl_psm_request->buf, length,
mtl_psm_request, &mtl_psm_request->psm_request);

if (err)

return OMPI_ERROR;

return OMPI_SUCCESS;

}

April 2011 8

Example of using PSM

MPI Send in OpenMPI 1.4.3
int ompi_mtl_psm_isend(…)

{

…

mca_mtl_psm_request_t * mtl_psm_request = (mca_mtl_psm_request_t*) mtl_request;

…

mqtag = PSM_MAKE_MQTAG(comm->c_contextid, comm->c_my_rank, tag);

ret = ompi_mtl_datatype_pack(convertor, &mtl_psm_request->buf, &length,

&mtl_psm_request->free_after);

if (OMPI_SUCCESS != ret) return ret;

mtl_psm_request->length= length;

mtl_psm_request->convertor = convertor;

mtl_psm_request->type = OMPI_MTL_PSM_ISEND;

if (mode == MCA_PML_BASE_SEND_SYNCHRONOUS)

flags |= PSM_MQ_FLAG_SENDSYNC;

psm_error = psm_mq_isend(ompi_mtl_psm.mq, psm_endpoint->peer_addr, flags, mqtag,

mtl_psm_request->buf, length, mtl_psm_request, &mtl_psm_request->psm_request);

return psm_error == PSM_OK ? OMPI_SUCCESS : OMPI_ERROR;

}

April 2011 9

Features Handled Inside PSM

• MPI tag matching

• Per message selection of data movement approach
– eager, rendezvous, etc

• Multi-Rail

• Dispersive routing
– Concurrent transmission of large message segments on different

paths

– Rotation of path usage to balance traffic patterns in fabric core

• Scalable resiliency algorithms
– Flow control

– Retry/timeout

– Degree of persistence in face of congestion or fabric instabilities

– Tolerance for OS jitter

• Memory locking
April 2011 10

Features Handled Inside PSM

• GPU integration

• End point establishment

• Path resolution
– LID exchange for simple fabrics

– QoS and partitioning interaction for clusters with Virtual Fabrics

– Scalable SA PathRecord query for complex fabrics (Torus, Mesh, etc)

• QoS
– QoS level per job

– Multiple QoS level in same job
• Separate QoS levels for control messages vs bulk data transfers

• Optional CPU affinity

• HPC Oriented Interconnect statistics and debug hooks

Localization of features makes them instantly available for all MPIs
April 2011 11

Advanced PSM Feature Example:

Dispersive Routing

• Multiple routes exist between pairs of sources and destinations

– LMC enabled

• Choice of route is source-directed

– Short and control messages

• Follow a single path to maintain ordering

– Long messages

• Rendezvous transfers, once set up, can be un-ordered with respect to each other

• Round-robin path selection

• Dispersive routing load balances traffic across these paths to reduce

hotspots and congestion

– Improved performance

– More deterministic/reproducible performance

April 2011 12

PSM Dispersive Routing

• Traditional InfiniBand

fabrics use static routes

thru the fabric based on

the destination LID

• Deterministic oblivious

routing does not reach

full bisectional

bandwidth for random

messaging patterns

• Fat-Tree networks

deliver <60% of peak 0

20,000

40,000

60,000

80,000

100,000

120,000

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

A
gg

re
ga

te
 U

n
id

ir
e

ct
o

n
al

 B
an

d
w

d
it

h
 M

B
/s

e
c

Message Size

OSU Multi Bandwidth (64 nodes / 512 cores)

FBB

Dispersive

Single Path

51% of max

85% of max

FBB

Dispersive Routing Delivers Higher Bandwidth

April 2011 13

Advanced PSM Feature Example:

GPUDirect Integration

• GPUDirect

– Optimizes memory access and transfers for

communication between GPU nodes across InfiniBand

– Provides for faster communications across a GPU

based cluster

April 2011 14

PSM Solution
• No memory region conflicts

• No impact on GPGPU performance

• Maintains latency and message rate

performance

System
 M

em
o

ry

CPU

2

GPU

GPU
Memory

1

44% Performance improvement with PSM GPUDirect

Performance with and without GPUDirect

April 2011 15

• 44% Performance improvement with PSM and GPUDirect
NDC Based Results

Test Configuration

- 8 GPU Cluster

- Tesla M2050 GPU (2/Server)

- Intel Servers –

-- Dual X5570 2.93 GHz

-- 24GB Memory/Server

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

8

N

S

/

D

a

y

GPU

Amber Performance
Cellulose Test

w/o GPUDirect TrueScale w/Update

44%

B
et

te
r

Advanced PSM Feature Example:

Path Resolution

• For simple fabric designs (such as Fat Tree) LID exchange is sufficient

– Basic QoS and Partitioning with a single PKey and SL for entire job

• However, more advanced fabrics need full Path Records

– Mesh/Torus

– SL can vary per PathRecord, fabric disruption handling can also alter SL

– Fabrics using virtual Fabrics to separate various MPI jobs

– Fabrics using virtual Fabrics to separate control vs data in a single MPI job

• PSM Hides this complexity from MPI

– Provides simple parameters to enable/disable the capability

– Jobs can be assigned ServiceIds to identify job in PathRecord queries

16

PSM Enables a Very Scalable Solution
April 2011

Scalable Path Resolution

Compute Node

job rank

job rank

…

SA Path
Record
Replica

SM/SA

• Each node retains and
synchronizes a PathRecord
replica with the SM/SA

– Automatic update on fabric
change

• Replica persists beyond life of
jobs

– Shared by all ranks on
node

• Replica allows >1 Million
PathRecord query/sec per
node

• Permits very rapid job startup
and avoids SA being a
bottleneck in large fabrics

Compute Node

job rank

job rank

…

SA Path
Record
Replica

Compute Node

job rank

job rank

…

SA Path
Record
Replica

April 2011 17

PSM Performance Focus

• MPI Collectives are Critical to Scalability and
Performance of most applications

• At the Heart of Collectives is Scalable Latency and
Messaging Rate
– A critical design focus for PSM

• PSM’s Performance allows MPI’s Native Collectives to
Scale and Perform
– No need for hardware acceleration

• Full MPI Collective Performance is available for all
Collectives, all MPIs, all Collective Algorithms

April 2011 18

MPI Collectives Performance at

Scale

0

100

200

300

400

500

600

700

800

900

1000

0 5000 10000 15000

A
vg

u
se

c

processes

AllReduce 12 core/node
4B

16B

256B

2KB

4KB

8KB

0

50

100

150

200

250

0 5000 10000 15000

A
vg

u
se

c

processes

Broadcast 12 core/node
4B

16B

256B

2KB

4KB

8KB

0

5

10

15

20

25

30

35

40

1 5001 10001 15001

A
vg

u
se

c

Processes

Barrier

1 core

8 core

12 core

• 1200+ node Westmere System

• LLNL Muir Cluster

• QLogic QDR HCA and Switches

• Open MPI with PSM MTL

• Default OpenMPI Collectives algorithms

April 2011 19

Highly Scalable Application

Performance

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

8 16 32

Nodes

Truck_111m Model

X5570

X5670

0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

14000.0

16000.0

1 2 4 8 16 32

Nodes

Eddy_417k Model

X5570

X5670

• Scalability and Collectives

Performance results in application

scalability

• PSM Solutions Scale with Node Count

• PSM Solutions Scale with Core Count

• PSM takes advantage of performance

advances in CPUs and GPUs

http://www.ansys.com/Support/Platform+Support/Benchmarks+Overview
April 2011 20

Summary

• PSM is now included in OFED

• PSM is a highly optimized API Focused on the needs of MPI
and HPC

• PSM provides the right abstraction layer
– Relieves MPI from all the interconnect details

– Allows many advanced interconnect specific optimizations in PSM

• PSM provides excellent scalability

• PSM provides excellent messaging rate, scalable latency

• PSM’s inherent performance translates to excellent collectives
performance

• PSM results in application scalability and performance for all
MPIs

April 2011 21

Thank You

22

Author: Todd Rimmer
Date: April 2011

April 2011

