
Workload driven MR
registration
Parav Pandit
Emulex Corporation

Overview

• Block storage access using RDMA is increasingly becoming
popular in data centers using iSER, SRP and Ceph.

• NFS, SMB Direct and other distributed file systems based
access equally deployed in similar environments.

• Distributed storage is equally getting attention where
compute and storage node being in single system.

• To get reasonable IO performance using RDMA transport, its
necessary to have certain number of RDMA Memory regions
per RDMA QP.

• New nodes in a cluster gets added for compute or storage
needs. This increases number of connections and so it
demands higher number of MRs as connections grow.

Resource consumption per
session

RDMA Protocol Number of FRMR
regions per
connection

Default number of
QPs per session

SRP initiator 128 1 to more

iSER initiator 113 1

NFS-RDMA client 2178 1

• As the storage become more distributed, with current ULPs
number of MRs grows linearly with every connection, while
system IOPs continues to remain same reaching the HCA’s
link speed limit or Message limit.

Requirements

• Number of connections should scale close to number of QPs
instead of having static limit based on number of MRs per
session.

• Should able to cater to dynamic workload pattern of hosted
VMs to bare metal HA nodes, bare metal systems using Linux
containers.

• Should be able to continue to interact to new nodes being
added - hosting storage data.

• Block or file system IO data path should avoid stall or task
switching at IO transport layer to avoid number of switches
between transport layer and block storage layer.

• Memory registration and deregistration usually involves HCA. It
should be able to overcome this latency which is relatively
higher compared to other RDMA operations.

Dynamic IO workload

0
0.5

1
1.5

2
2.5

3
3.5

Time

Short burst
Sustained high
Sustain average
Infrequent

Sudden burst of IOs at start or at later stage

HA storage pair backend performing IOs to keep two storage nodes in sync

Sustained IOs for fair amount of time between few client server pair

VMs consolidated from single server performing relatively lower average IOs per VM
in hosted environment.

– Connections idle from few milliseconds to seconds between client and server

Current solutions

• Statically allocate constant number of MRs during
connection setup time. Allocate sufficient amount to meet
the IOPs.
– This continue to keep wider disparity between number of

connections and MRs
• Allocate small number of MRs say A at start time,

continue to allocate more based on workload via slow
allocation process and deploy them via FRMR.
– Burst IO beyond A number of IOs, will have to stall until MR

is allocated from slow/potentially blocking path
– Need to release those unused MRs to deploy for other

connections on different/same PD.

Current solutions

• Number of MRs allocated is not function of logical or
physical link speed.

• Number of MRs allocated is not function of end storage
type having varied IO response time (SSD, rotating
disks, hybrid, RAM backed)

• Fails the connection on failure to allocate sufficient MRs
which might be available at later stage

Extending the solution –
Mobile MR
• Allow RDMA ULP applications

to register MRs per adapter
instead of per PD

• Attach MR to QP (and so to
PD) during FRMR Work
request processing time

• Local invalidate or send with
invalidate operations detach
the MR from the PD

Extending the solution –
Mobile MR
• Trusted kernel space driver ensures that one ULP doesn’t

register memory region of other ULP.
• Works from every VM guest OS kernel as well in SR-IOV.
• PD cannot be destroyed anyway until QP is destroyed holding

FRMR or other work requests belonging to the MR.
• Reuse the same MR used in past quickly.

– to likely find it active in the HCA’s cache for repurposing for new IO.

• Requires efficient scheme for sharing dynamically in workload
driven way.

Pooling of MRs

Block Storage
Initiator (iSER)

MR 0-15

MR 16-31

MR 32-47

MR 1023-
1039

MR L1 cache
Per connection

Bucket1

Bucket2

Bucket3

Bucket4

Global shared
pool across

multiple
connections

MR 32-47

MR 32-47

MR L2 cache

File System
Client

(NFS –RDMA)

Mobile MR caching scheme

• Global pool serves the request for all the connections
– Non blocking APIs to service the IOs at transport layer

• Pooling layer monitors and can request unused entries
from L1 cache using registered callback API and
internally from L2 cache

• Pool holds entries per device per ULP

Mobile MR caching scheme

• Two level of cached entries
– Static number of entries in each cache
– Connection specific cache - L1 cache

1. Small number of entries in L1 cache
2. Enjoys user defined locking scheme
3. Allows always servicing of minimum set of outstanding

IOs
– Shared among multiple connections – L2 cache bucket

1. 4 to 8 buckets per pool
2. Least used bucket is assigned to new connection
3. Distributes connections to buckets based on

connection count sharing bucket
4. Avoid contention by hundreds of client into the global

pool

Cache handling

• Cache handling is internal to pool layer
• When MRs of the client are unavailable from connection

(L1) cached entries, it fetches from L2 cache bucket.
• When L2 cache bucket is empty, it fetches the entry from

the global pool
• Entries added back to L1 connection cache if taken from

connection cache
• Added to L2 cache buckets if bucket has space or

replenished to global pool for other connections

Pool based MR flow (Send with
Invalidate)

Pool based MR data flow (Local
Invalidate)

Cache handling
• Entries to global pool are added on receiving of

local_invalidate completion to avoid reuse by other
connections

• Connection cached entries can be added without
local_invalidate completion

• Entries to global pool added on receiving
send_with_invalidate completion

• More entries in global pool are created when free entries drop
below the minimum threshold

• Entries in global pool are monitored every 1msec, where if
there are unused than its freed in small blocks to use by other
ULPs

• Entries from L2 cache buckets are put back to global pool if
remain unused for certain time

Mobile MR APIs

• Pool creation and deletion blocking APIs:
– struct ib_frmr_pool *ib_create_frmr_pool(
 struct ib_device *dev, struct ib_pd *pd,
 struct ib_frmr_pool_params *params);
– void ib_destroy_frmr_pool(struct ib_frmr_pool *pool);

• Pool client consumer registration APIs:
– struct ib_frmr_pool_user *
 ib_create_frmr_pool_user(
 struct ib_frmr_pool *pool, int num_mr);
– void ib_destroy_frmr_pool_user(struct ib_frmr_pool

*pool, struct ib_frmr_pool_user *user);

Optional

Mobile MR APIs

• Run time non blocking APIs:
– struct ib_frmr_desc *ib_frmr_pool_get_mr(struct

ib_frmr_pool_user *user);
– void ib_frmr_pool_put_mr(struct ib_frmr_pool_user

*user, struct ib_frmr_desc *desc);

• Dynamically adding MR to pool:
– int ib_frmr_add_mr(struct ib_frmr_pool *pool, struct

ib_mr *mr);
– int ib_frmr_remove_mr(struct ib_frmr_pool *pool,

struct ib_mr *mr);

Example comparison

• Existing model (iSER)
– 2048 Memory regions

• 113 MRs per connection
• Total Block storage devices = 18 devices

• Mobile MR based scheme
– 2048 Memory regions

• 32 MRs per connection
• 256 MRs in pool
• Total block storage devices = 54 devices

• Scaling by factor of 3 using same number of MR.

Future extensions

• Possibilities and WIP
– User space extension:

• For re-registering memory without repining overheads for
different connections?

• Kernel bypass to bind same memory without re-pin to different
QP via data path QP

• Ensuring check for a given user context during MR registration/
Deregistration.

– Can file system be made distributed by just distributed
storage using just smart logical volumes? Consistency? Or
it can be still non shared but distributed?

– Performance tuning
– Fairness among connections

#OFADevWorkshop

Thank You

	Workload driven MR registration
	Overview
	Resource consumption per session
	Requirements
	Dynamic IO workload
	Current solutions
	Current solutions
	Extending the solution – �Mobile MR
	Extending the solution – �Mobile MR
	Pooling of MRs
	Mobile MR caching scheme
	Mobile MR caching scheme
	Cache handling
	Pool based MR flow (Send with Invalidate)
	Pool based MR data flow (Local Invalidate)
	Cache handling
	Mobile MR APIs
	Mobile MR APIs
	Example comparison
	Future extensions
	Thank You

