
SanDisk Confidential

Bart Van Assche, Ph.D.

Increasing SCSI LLD Driver Performance by
Using the SCSI Multiqueue Approach

March 17, 2015

Overview

Introduction

SCSI Architecture Concepts
Linux SCSI Initiator Stack

Linux SCSI Initiator Scalability Issues
SCSI Multiqueue Approach a.k.a. scsi-mq

SCSI RDMA Protocol (SRP)
Importance of MSI-X

Multiqueue SRP initiator Performance Results

Introduction

Today's SSDs and all-flash arrays support more than one
million IOPS and sub-millisecond latency.
Until recently the Linux block layer and SCSI core were a
bottleneck for these fast storage devices.
Hence the introduction of multiqueue support in the
block layer core (blk-mq) and SCSI mid-layer (scsi-mq).
Leveraging full multiqueue potential requires requires
SCSI LLD driver modifications.
Results will be shown for the InfiniBand SRP initiator
driver.

About myself

Linux kernel InfiniBand SRP initiator maintainer.
SCST co-maintainer.
Member of the SanDisk ION team.
ION = all-flash array.
In our performance tests we noticed that there was a
bottleneck at the initiator side.

SCSI Architecture Concepts

SCSI command: READ, WRITE, REPORT LUNS, INQUIRY, ...
Transport protocol: e.g. FC, iSCSI, iSER, SRP.
LUN = Logical Unit Number.
Initiator system: submits SCSI commands.
Target system: processes SCSI commands.

Linux SCSI Initiator Stack

Upper level drivers: sd (disk), sr (CD-ROM), st (tape), …

Mid level: SCSI command processing; error handling;
interface between UL and LL drivers.
Lower level drivers: SCSI transport protocol

implementation + HBA driver. Examples: FC, iSCSI, iSER and
SRP initiator drivers.

Linux SCSI Initiator Command Processing

Mid-level submits SCSI command to LLD via
queuecommand().
LLD submits command to HCA.
LLD receives command completion from HCA via interrupt

or via polling.
LLD reports command completion via cmd->scsi_done().

Linux SCSI Initiator Scalability Issues

At most 400.000 IOPS per LUN.
Lock contention in mid-layer.
Previous attempts to use polling resulted in limited

performance improvements (about 5%).
Interrupt coalescing increases latency too much.
Hence the limitation of the SCSI command processing rate

to about the speed at which a single CPU can process
interrupts.

SCSI Single Queue Approach

One SCSI command queue
per SCSI host shared by all
CPU cores.

SCSI Multiqueue Approach a.k.a. scsi-mq

One SCSI command queue per
SCSI host and per CPU core.
Number of queues between

LLD and HBA depends on LLD
implementation.
Note: Linux SCSI initiator stack

does not guarantee that SCSI
commands submission order is
preserved.

SCSI RDMA Protocol (SRP)

Allows one computer to access SCSI devices attached to
another computer via remote direct memory access
(RDMA).
Advantages of RDMA are low latency, low CPU utilization

and high bandwidth.
ANSI T10 SRP specification defines how to use multiple

RDMA channels for a single SRP session.
ib_srp kernel driver implements SRP over InfiniBand.

Multiqueue SRP initiator

Available in Linux kernel 3.19 (February 2015).
Supports scsi-mq:
set SCSI_MQ_DEFAULT=y in kernel config
- or -
echo Y > /sys/module/scsi_mod/parameters/use_blk_mq

Configurable number of RDMA channels:
echo options ib_srp ch_count=$n > /etc/modprobe.d/ib_srp.conf

Performance depends on number of MSI-X vectors
supported by RDMA HCA.
Test setup: RDMA HCAs with eight MSI-X vectors.

Multiqueue and NUMA Systems

Achieving optimal performance on NUMA systems means constraining
communication between CPU sockets.
Hence, process each I/O completion on the CPU socket that submitted the I/O.
Setting rq_affinity=2 helps but is not sufficient. MSI-X interrupt must be

processed by CPU that submitted I/O request.
Requires knowledge of which MSI-X interrupt is associated with which CPU core:

/proc/irq/$n/smp_affinity.
SRP initiator driver assumes that MSI-X vectors are spread uniformly over CPU

sockets.
E.g. MSI-X vectors 0-3 are associated with first CPU socket and vectors 4-7 are

associated with second CPU socket.
SRP initiator driver selects MSI-X interrupt via RDMA the RDMA API – last

argument of ib_create_cq() is MSI-X completion vector index.

Latency Comparison (μs)

IOPS Performance for 50/50 R/W Workload

Performance Conclusions

Scsi-mq approach results in a significant latency reduction.
Kernel 3.14+sq / 3.19+mq+ch=1 results illustrate lock contention:

IOPS decrease for increasing number of LUNs.
Single channel (ch=1) scsi-mq performance better than that of

kernel 3.14.3 for #LUNs <= 2.
Initiator CPU usage was 100% for <= 4 LUNs and below 100% for > 4

LUNs due to target system saturation.
With multiple channels almost linear scalability of IOPS in terms of

LUNs (for #LUNs >= 4).
Multiple channels more than doubles maximum IOPS.
Note: CPU cores that ran I/O also processed IB interrupts.

Linux kernel 3.15

Several SCSI mid-layer optimizations were merged in kernel 3.15.
Optimizations apply to both traditional and multiqueue LLDs.
New field in struct scsi_host_template, namely cmd_size.
Allows drivers to specify size of per-command private data.
Makes SCSI core perform a single allocation for core + LLD per-
command data instead of a separate allocation by the SCSI core and
another allocation by the LLD.
See also James Bottomley, First round of SCSI updates for the 3.15
merge window, April 2014 (https://lkml.org/lkml/2014/4/1/441).

Linux kernel 3.17

A second series of optimizations and scsi-mq support were merged
in kernel 3.17.
The only way to enable scsi-mq with kernel 3.17 is as follows:
echo Y > /sys/module/scsi_mod/parameters/use_blk_mq

See also James Bottomley, First round of SCSI updates for the 3.17
merge window, August 2014
(https://lkml.org/lkml/2014/8/6/378).

Linux kernel 3.18

The CONFIG_SCSI_MQ_DEFAULT kernel configuration option was
merged in kernel 3.18.
See also James Bottomley, First round of SCSI updates for the 3.18
merge window, October 2014
(https://lkml.org/lkml/2014/10/7/839).

Linux kernel 3.19

New field in struct scsi_host_template: use_blk_tags.
Allows to use scsi-mq style tags even with scsi-mq disabled.
Allows to use the same LLD code with and without scsi-mq.

Support for multiple hardware queues was added to scsi-mq.
New functions for querying hardware queue index and tag from

inside SCSI LLD:
u32 hwq_and_tag = blk_mq_unique_tag(scmnd->request);
u16 hwq = blk_mq_unique_tag_to_hwq(hwq_and_tag);
u16 tag = blk_mq_unique_tag_to_tag(hwq_and_tag);
These functions also work with scsi-mq disabled.

scsi-mq support was added in a SCSI LLD, namely the SRP initiator
driver.
See also James Bottomley, First round of SCSI updates for the 3.19
merge window, December 2014
(https://lkml.org/lkml/2014/12/8/585 / http://www.spinics.net/lists/linux-
scsi/msg81290.html).

Future Work

Integrating blk-mq support in the dm-multipath driver
(Mike Snitzer and Keith Busch are working on this).
Adding I/O scheduler support in the blk-mq layer.
Adding scsi-mq support in the iSCSI initiator.
Adding scsi-mq support in the FC initiator drivers.
Automatic and scsi-mq aware IRQ affinity configuration,
e.g. in irqbalanced or in the kernel.

Thanks to

Christoph Hellwig for the hard work of implementing scsi-
mq.
Jens Axboe for the blk-mq changes and improvements
needed for scsi-mq.
Robert Elliott and Steve Cameron for helping with scsi-mq
testing.
Sagi Grimberg and Christoph Hellwig for reviewing the
IB/SRP scsi-mq patches.
Fusion-io/SanDisk for sponsoring Christoph's scsi-mq and
blk-mq work and for allowing me to work on scsi-mq.

References

Jonathan Corbet, Interrupt mitigation in the block layer,
LWN.net, August 2009 (html).
Matias Bjørling e.a., Linux Block IO: Introducing Multi-

queue SSD Access on Multi-core Systems, 6
th

 Systems and
Storage Conference, ACM, June 2013 (pdf).
Bart Van Assche, Scsi-mq Performance Measurements,

Google Drive, June 2014 (pdf).
Christoph Hellwig, High Performance Storage with blk-mq

and scsi-mq, Linuxcon Europe, Oct 2014 (pdf).

SanDisk Confidential

Any questions or comments ?

