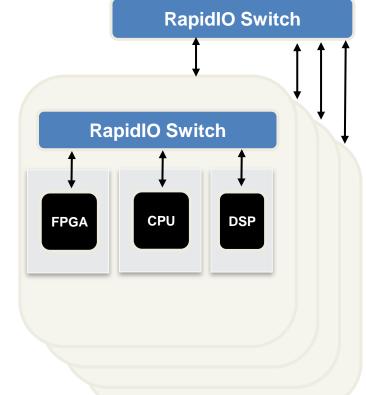


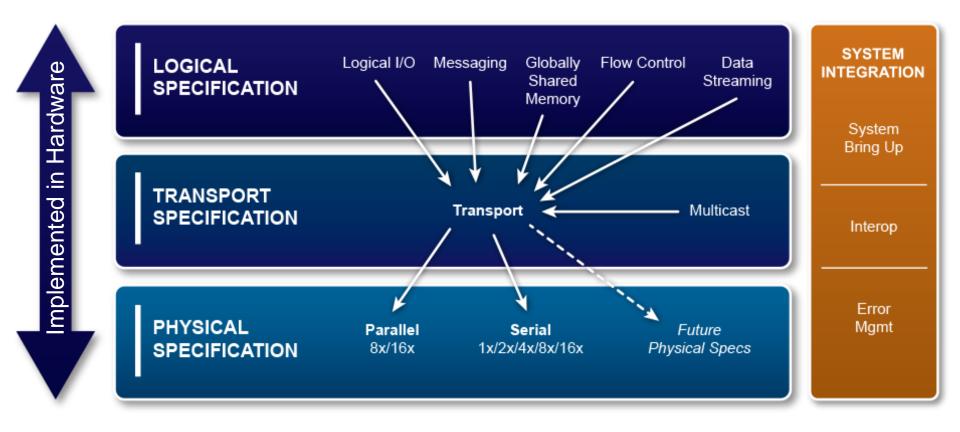
RapidIO.org Update rickoco@rapidio.org

Outline


- RapidIO Overview & Markets
 - Data Center & HPC
 - Communications Infrastructure
 - Industrial Automation
 - Military & Aerospace
- RapidIO.org Task Groups
 - ARM 64-bit Coherent Scale Out
 - SW Task Group
 - Verification Task Group
 - 100G+ Phy Task Group
 - Storage Task Group
- Summary

RapidIO Benefits

- Proven technology > 10 years of market deployment
- Supported by major CPU, DSP, NPU, FPGA & system vendors
- 10-160 Gbps/port Specification (10xN) released Q4 2013
- 10xN 3.1 Spec released Q3 2014 with increased fault tolerance for wireless & space applications
- ARM 64-bit Coherent Scale Out
- 25-400 (25xN) Gbps/port spec in development
- Hardware termination at PHY layer
- Lowest Latency Interconnect ~ 100 ns
- Inherently scales to 10,000's of nodes



Over 100 million 10-20 Gbps ports shipped worldwide
 100% 4G/LTE interconnect market share

60% Global 3G & 100% China 3G interconnect market share

Hardware Terminated Protocol Stack - no CPU overhead

Interconnect 'Check In'

Interconnect Requirements	RapidIO	Infiniband	Ethernet	PCle	The Meaning of
Low Latency			×		switch silicon: ~100 nSec memory to memory : <1 uSec
Scalability				×	support any topology, 1000' s of nodes, true peer-to-peer
Integrated HW Termination		×	×		integrated into SoCs and guaranteed, in order delivery without software overhead
Power Efficient		×	×		3 layers terminated in hardware, Integrated into SoC's
Fault Tolerant				×	supports hot swap and fault tolerance
Deterministic			×		guaranteed, in order delivery with deterministic flow control
Top Line Bandwidth				×	supports > 8 Gbps/lane

RapidIO Strong and Growing Ecosystem

© 2015 RapidIO.org

Mar 2015

RapidIO Markets

Data Center & HPC

- System flexibility is at the core of RapidIO unified fabrics
- Can support up to 64K processors (or end points), each with their own complete address space & supporting peer-to-peer transactions
- Server class ARM 64-bit Coherent
 Scale Out specification
- Data Center Compute and Networking (DCCN) platform has been released
 - Targeted at Server, Data Center & Supercomputing applications + showcases strength of the RapidIO ecosystem with multi-vendor collaboration

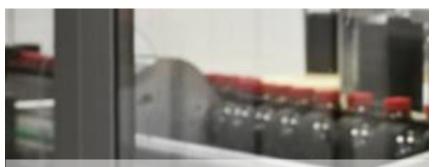
RapidIO Fabrics deliver best in class low latency and high bandwidth for heterogeneous compute clusters in performance critical Data Center and HPC applications

Mar 2015

RapidIO. HP Moonshot Proliant m800

- 2D Torus RapidIO unified fabric
- up to 45 m800 cartridges capable of providing 5Gbs per lane connections in each direction to its north, south, east and west neighbors
- highest density DSP solution in an industry standard infrastructure in the market today:
 - 1,440 C66x DSP cores
 - 720 ARM A15 cores
 - up to 11.5TB of storage in a single Moonshot chassis
 - all connected via a 5Gbs per lane RapidIO unified fabric

Communications Infrastructure


RapidIO Fabrics offer the lowest power, highest data throughput and best overall efficiency delivering realtime performance for Communications Infrastructure applications

- Dominant market share in global deployment of cellular infrastructure 3G, 4G & LTE networks
- Over 100 million RapidIO ports shipped into wireless base stations to date
- RapidIO unified fabric clusters general purpose, digital signal, FPGA & communication processors together in a tightly coupled system with low latency and high reliability

Industrial Automation

- System topology flexibility and scalability
- Lossless fabric with guaranteed forward progress & deterministic data delivery
- Low-latency for real-time applications & low footprint enabling high density designs
- Mainstream Linux supported
 functions:
 - Hot-swap capable, Dynamic configuration, Real-time diagnostics with fast localization of failures, System discovery & enumeration, OpenMPI ready

RapidIO Fabrics enable guaranteed data delivery and system topology flexibility for tightly controlled Industrial Automation applications

Military & Aerospace

- RapidIO Fabrics deliver key performance metrics such as:
 - best in class switch cut through latency of ~100ns
 - lossless data flow
 - small footprint and lowest overall power consumption
- RapidIO.org Community works closely with the VITA Standards Organization
 - to specify use of RapidIO
 Fabrics within the OpenVPX
 (VITA 65) backplane standard
 & the SpaceVPX (VITA 78)
 backplane standard

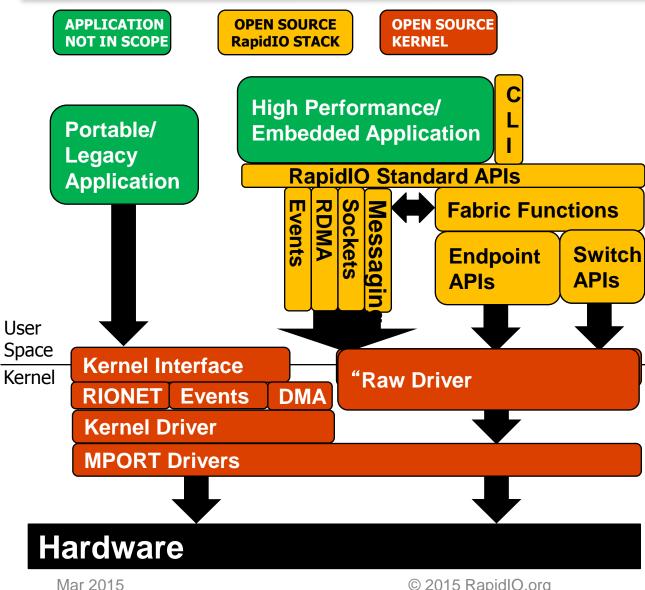
RapidIO Fabrics deliver highly reliable, fault tolerant performance to demanding Mil/Aero applications

RapidIO RapidIO.org Tasks Groups

ARM 64-bit Coherent Scale Out Task Group Charter

- The ARM 64-bit Coherent Scale Out over RapidIO Task Group shall be responsible for <u>developing a specification</u> for multi SoC / core coherent scale out of ARM 64-bit cores with the following functionality:
 - coherent scale out of a few 10s to 100s cores & 10s of sockets
 - ARM AMBA® protocol mapping to RapidIO protocols
 - AMBA 4 AXI4/ACE mapping to RapidIO protocols
 - AMBA 5 CHI mapping to RapidIO protocols
 - Migration path from AXI4/ACE to CHI and future ARM protocols
 - support for GPU/DSP floating point heterogeneous systems
 - HW hooks and definition to support RDMA, MPI, secure boot, authentication, SDN, Open Flow, Open Data Plane, etc
 - Other functionality as necessary to for performance critical computing - support Data Center, HPC and Networking Infrastructure system development and deployment

		Number of	Coherency	Coherency		Latency	Interconnet	Interconnect	Examples
	Coherency Class	Devices	Domains	Granule	Distances	characteristics	РНҮ	Architecture	Verticals
							parallel,		
1	Homogeneous	2	1	cache line	~inch	highly optimized	electrical	p2p	HPC
							serial,		
							electrical or	p2p or	
2	Homogeneous	2-8	1-4	cache line	single board	real-time limits	optical	switched	HPC
							serial,		
							electrical or		
3	Homogeneous	4-16	1-8	cache line	two boards	real-time limits	optical	switched	HPC
							serial,	p2p or	
4	Heterogeneous	2-4	1		single board	real-time limits	electrical	switched	HPC
		2-8 Processor			single or		serial,	p2p or	embedded
5	Heterogeneous	SoCs	1-8	cache line	dual board	real-time limits	electrical	switched	compute
									Graphics, BTS,
		2-8 mixed			single or		serial,		GPU/DSP with
6	Heterogeneous	component	1-8	cache line	dual board	real-time limits	electrical	switched	OpenCL
		2-8 mixed					serial,		SDN/NFV,
7	Heterogeneous	component	1-8	cache line	single board	soft	electrical	switched	router
							serial,		
					multi-board		electrical or		
8	Heterogeneous	4-100	many	cache line	or shelf	best effort	optical	switched	switch/ router
									Storage,
					distributed				Cloud, fail-
9	Large System	10s-100s	many	tbd	system	best effort	serial	switch	over
					distributed				
10	Large System 2	10s-100s	many	tbd	system	best effort	serial	switch	HPC



SW Task Group

- Kernel enhancements
 - "raw driver" interfaces which support all endpoints
 - Fault tolerance/hot swap support
 - Customizable/optional enumeration/discovery
- Fabric management stack
 - Uses "Raw Driver" interfaces
 - Portable across endpoints and operating systems
 - Command Line Interpreter for basic configurability
- Interoperable, standardized data path
 - RDMA, Sockets, and Channelized Messaging
 - Reference implementation uses "Raw driver"
 - User Mode Driver for maximum performance

Open Source Stack

CLI - Open source command line interpreter for fabric management

RapidIO Standard APIs

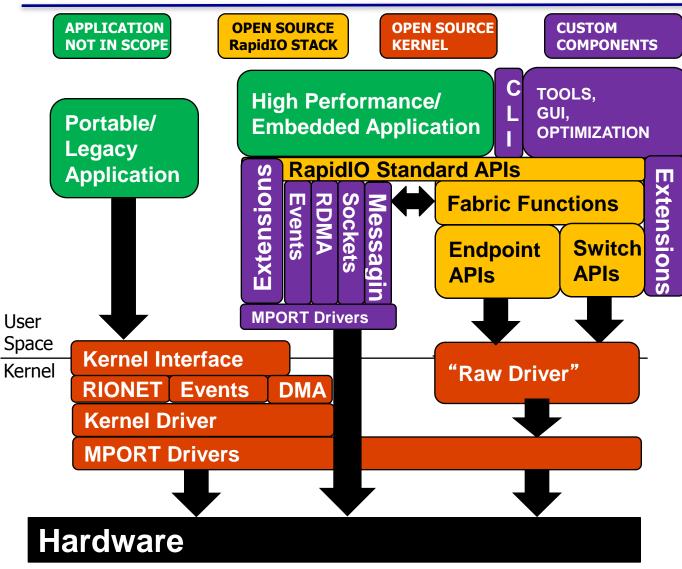
RapidIO standard interface definitions and behavior

Fabric Functions Implementation of RapidIO

Standard APIs Fabric Management

Endpoint APIs - Universal programming model for endpoint functions

Switch APIs - Universal programming model for switch functions.


Messaging/Sockets/RDMA

/Events - Implementation of RapidIO Standard API's Data Path

"Raw Driver" - Standardized hardware functions.

© 2015 RapidIO.org

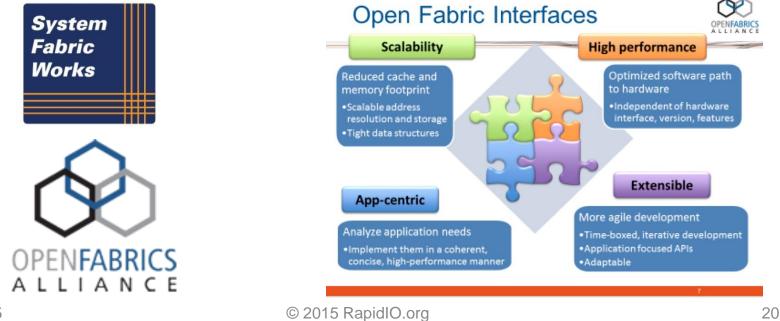
RapidIO Customization, Optimization

TOOLS, GUI, OPTIMIZATION

Value adders for debug/monitoring, system visualization, data interpretation, and topology specific functions

MPORT Drivers

Drivers optimized for and aware of executing hardware operations in user mode.


Extensions

Additional data path and/or fabric management services provided to applications

SW Task Group & OFIWG

- leverage existing RapidIO SW Task Group efforts for OFIWG over a unified RapidIO fabric
- System Fabric Works has joined the RapidIO.org community to lead this effort
- other OFA developers are invited to participate

- Define features to be added to the BFM
 - 3.1 extensions including the NGSIS Space
 Profile
 - ARM 64-bit coherency support
- Define licensing model for BFM
 - Open source?
 - Eliminate membership requirement for library?
- Define interfaces to support customization / integration with AXI BFMs
- Develop baseline verification environment Mar 2015 © 2015 RapidIO.org

Proposed 100G+ PHY Charter

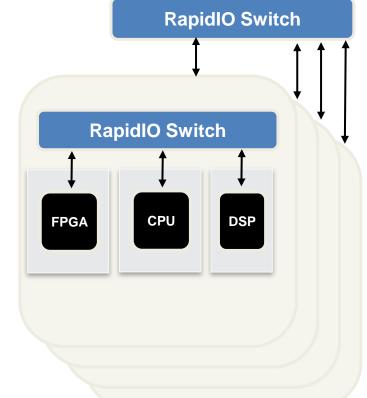
- The 100G+ PHY Task Group charter is to develop higher performance PHY specifications for the RapidIO protocol
 - 1. Determine and define 25G or greater PHY leveraging industry standard specification(s)
 - 2. Evaluate and confirm PHY definition will improve or maintain existing PHY characteristics
 - a) Improve power efficiency
 - b) Maintain asymmetric link operation
 - c) Maintain low latency characteristics
 - d) Maintain fault tolerant characteristics
 - e) Maintain reliability characteristics assuming a bit error rate of less than 10-12
 - 3. Specify a low latency PHY suitable for dual- and quad-socket cache coherency applications
 - 4. Outline and prioritize additions/improvements to the PHY feature set
 - 5. Other additions and improvements to the PHY feature set as requested

Storage Task Group Scope

- Define a storage fabric standard scalable in capacity and bandwidth
- The standard's key features are:
 - Clear separation of logical storage layers from physical storage layers
 - Virtual channels with flow control and QoS support
 - An extendable, declarative Storage Configuration Language to specify fabric virtual topology, storage behavior like failover/RAID/replication and QoS parameters to define SLAs.
 - A clear separation of control and data planes at the architecture and fabric level with appropriate virtual channel support
- Define the storage components attached to the fabric and specify their normative functionality
- Specify portions of the T10 stack that apply to this proposal and the proposed extension

IT UNIVERSITY OF COPENHAGEN

- A storage fabric standard based on an optical variant of RapidIO 3.0, optimized for large packet sizes (4k)
- Aimed at systems using SSDs/NVRAM as primary storage devices and HDDs as secondary media
- Define new Storage API optimized for SSDs and future NVRAMs
- Decentralized scheme with distributed metadata non-centralized management is a key feature of this standard ensuring no single point of failure
- Storage components with significant compute ability to allow running user code in virtualized containers
- Amalgam of existing standards to the extent possible


RapidIO.org Summary

RapidIO Summary

- Proven technology > 10 years of market deployment
- Supported by major CPU, DSP, NPU, FPGA & system vendors
- 10-160 Gbps/port Specification (10xN) released Q4 2013
- 10xN 3.1 Spec released Q3 2014 with increased fault tolerance for wireless & space applications
- ARM 64-bit Coherent Scale Out
- 25-400 (25xN) Gbps/port spec in development
- Hardware termination at PHY layer
- Lowest Latency Interconnect ~ 100 ns
- Inherently scales to 10,000's of nodes

Over 100 million 10-20 Gbps ports shipped worldwide
100% 4G/LTE interconnect market share
60% Global 3G & 100% China 3G interconnect market share

Mar 2015