

Presentation at Open Fabrics Developers Conference (Nov. '07) by Dhabaleswar K. (DK) Panda Department of Computer Science and Engg. The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

Presentation Overview

- Overview of MVAPICH/MVAPICH2 Project
- Features of MVAPICH 1.0 and MVAPICH2 1.0
- Sample Performance Numbers
 - Point-to-point (Mellanox and Qlogic)
 - Point-to-point with Intel-Connects Cable
 - Point-to-point with Obsidian IB-WAN
 - Multi-core-aware Optimized Collectives
 - UD-based Design
 - Hot-spot Avoidance Mechanism (HSAM)
- Upcoming Features and Issues
 - XRC support
 - Enhanced UD-based Design
 - Asynchronous Progress
- Conclusions

MVAPICH/MVAPICH2 Software Distribution

- High Performance and Scalable Implementations
 - MPI-1 (MVAPICH)
 - MPI-2 (MVAPICH2)
- Both are being available with OFED
- With OFED 1.3
 - MVAPICH 1.0-beta
 - MVAPICH2 1.0
- Directly downloaded and used by more than 580 organizations in 42 countries
- Empowering many production and TOP500 clusters. Examples include
 - 3rd ranked TOP500 system (14,336 cores) in Nov '07 list, delivering 126.9 TFlops (MVAPICH)

- 8,192-core cluster at NCSA (MVAPICH2)
- More details at http://mvapich.cse.ohio-state.edu

New Features of MVAPICH 1.0

- Asynchronous Progress
 - Provides better overlap between computation and communication
- Flexible message coalescing
 - enable/disable coalescing
 - Allows varying degrees of coalescing
- UD-based support
 - Best performance and scalability with constant memory footprint for communication contexts

- Support for Automatic Path Migration (APM)
- Multi-core optimizations for Collectives
- Enhanced mpirun_rsh for scalable launching
 - Provides a two-level approach (nodes and cores within a node)
- Support for ConnectX
- Support for Qlogic/PSM

New Features of MVAPICH2 1.0

- Message coalescing support
- Hot-spot avoidance mechanism for alleviating network congestion in large clusters
- Application-initiated systems-level checkpoint
 - in addition to the automatic systems-level checkpoint from 0.9.8
- Automatic Path Migration (APM) support
- RDMA Read
- Blocking
- Multi-rail support for iWARP
- RDMA CM-based connection management (Gen2-IB and Gen2-iWARP)
- On-demand connection management for uDAPL (including Solaris)

Support for Multiple Interfaces/Adapters

- OpenFabrics/Gen2-IB
 - All IB adapters supporting Gen2
 - ConnectX
- Qlogic/PSM
- · uDAPL
 - Linux-IB
 - Solaris-IB
 - Other adapters such as Neteffect 10GigE
- OpenFabrics/Gen2-iWARP
 - Chelsio
- VAPI
 - All IB adapters supporting VAPI
- TCP/IP
 - Any adapter supporting TCP/IP interface
- Shared Memory Channel (MVAPICH), for running applications in a node with multi-core processors

Presentation Overview

- Overview of MVAPICH/MVAPICH2 Project
- Features of MVAPICH 1.0 and MVAPICH2 1.0
- Sample Performance Numbers
 - Point-to-point (Mellanox and Qlogic)
 - Point-to-point with Intel-Connects Cable
 - Point-to-point with Obsidian IB-WAN
 - Multi-core-aware Optimized Collectives
 - UD-based Design
 - Hot-spot Avoidance Mechanism (HSAM)
- Upcoming Features and Issues
 - XRC support
 - Enhanced UD-based Design
 - Asynchronous Progress
 - Passive synchronization support
- Conclusions

MPI-level Latency (One-way): IBA (Mellanox and QLogic)

- From various papers SC '03, Hot Interconnect '04, IEEE Micro (Jan-Feb) '05, one of the best papers from HotI '04
- Also from `Performance' link of MVAPICH page

MPI-level Bandwidth (Uni-directional): IBA (Mellanox and QLogic)

MPI-level Bandwidth (Bi-directional): IBA (Mellanox and QLogic)

MVAPICH-PSM Performance: AMD Opteron with HT

MPI-level Latency (One-way): iWARP with Chelsio

2.0 GHz Quad-core Intel with 10GigE (Fulcrum) switch

MVAPICH2 gives a latency of about 7.39us as compared to 28.5 for MPICH2

•

MPI-level Bandwidth: iWARP with Chelsio

Peak bidir-bandwidth of about 2380 MillionBytes/s

Performance with Intel-Connect IB cable (MPI Latency with switch)

Performance with Intel-Connect IB Cable (MPI Bandwidth)

Intel Connect fiber optic cables closely match the performance of copper cables

Up to 80% performance difference for 8k messages with and without protocol tuning

MPI_Bcast Latency

64 nodes

17

32 nodes

Using shared memory improves the performance of MPI_Bcast on
512 cores by more than two times

Shared Memory-Based Collectives for Multi-core Platforms

- \cdot 64 Intel Quad-core systems with dual sockets (512 cores)
- Improves performance by almost 3 times
- Similar performance improvement for MPI_Barrier

Efficient Shared Memory and RDMA based design for MPI_Allgather over InfiniBand, Amith R. Mamidala, Abhinav Vishnu and D. K. Panda, EuroPVM/MPI, September 2006

MVAPICH/PSM Collective Performance

- \cdot 64 Intel Quad-core systems with dual sockets; PCIe InfiniPath Adapters
- Significant performance improvement for MPI_Bcast and MPI_Barrier

Zero-Copy over Unreliable Datagram (UD)

- Using a novel technique, zero-copy transfers can be made over UD.
- Performance very close to that of RC
- Supported in MVAPICH 1.0-beta

M. Koop, S. Sur and D. K. Panda, Zero-Copy Protocol for MPI using InfiniBand Unreliable Datagram, Cluster 2007

NAS Parallel Benchmarks with UD

■ RC (MVAPICH-0.9.8) ■ UD (Progress) ■ UD (Hybrid) ■ UD (Thread)

- CFD Kernels with varied communication patterns
- UD Progress shows better performance than the thread or hybrid models
- FT and IS both use large MPI_Alltoall collective calls, in which each process communicates directly with every other process
 - ICM cache misses for RC
 - Large improvement for UD, even

Normalized Time - 256 processes with 256 processes

M. Koop, S. Sur and D. K. Panda High Performance MPI Design using Unreliable Datagram for Ultra-Scale InfiniBand Clusters, ICS 2007

SMG2000

	RC (MVAPICH 0.9.8)				UD Design			
	Conn.	Buffers	Struct	Total	Conn	Buffers	Struct	Total
512	22.9	65.0	0.3	88.2	0	37.0	0.2	37.2
1024	29.5	65.0	0.6	95.1	0	37.0	0.4	37.4
2048	42.4	65.0	1.2	107.4	0	37.0	0.9	37.9
4096	66.7	65.0	2.4	134.1	0	37.0	1.7	38.7

- Performance is enhanced considerably with UD
- Large number of communicating peers per process (992 at maximum)
 - UD reduces HCA cache thrashing
 - Very communication intensive
- 27 packet drops at 4K processes with 1.4 billion MPI messages
- Large difference in memory consumption, even only 1/4 of connections made

Hot-Spot Avoidance with **MVAPICH**

- Deterministic nature of • InfiniBand routing leads to hotspots in the network even with Fat-Tree
- Responsibility of path utilization ٠ is up to the MPI Library
- We Design HSAM (Hot-Spot ٠ Avoidance MVAPICH) to alleviate this problem

For different FT Class benchmarks, performance improvement varies from 6-9 % ٠

A. Vishnu, M. Koop, A. Moody, A. Mamidala, S. Narravula and D. K. Panda , "Hot-Spot Avoidance With Multi-Pathing Over InfiniBand: An MPI Perspective, " (CCGrid), Rio de Janeiro - Brazil, May 2007 23

Presentation Overview

- Overview of MVAPICH/MVAPICH2 Project
- Features of MVAPICH 1.0 and MVAPICH2 1.0
- Sample Performance Numbers
 - Point-to-point (Mellanox and Qlogic)
 - Point-to-point with Intel-Connects Cable
 - Point-to-point with Obsidian IB-WAN
 - Multi-core-aware Optimized Collectives
 - UD-based Design
 - Hot-spot Avoidance Mechanism (HSAM)
- Upcoming Features and Issues
 - XRC support
 - Enhanced UD-based Design
 - Asynchronous Progress
 - Passive synchronization support
- Conclusions

XRC Support with ConnectX

- XRC (eXtended Reliable Connection) is being proposed for large-scale clusters
- We have designed and implemented an initial prototype of MVAPICH with XRC support
- In-depth results will be presented during tomorrow's XRC session

MVAPICH Latency: RC and XRC

- Results for latency are nearly identical between the use of RC and XRC transports
- 1.49usec for RC, 1.54usec for XRC

Enhanced UD-based Design

- Current UD-based design in MVAPICH 1.0 delivers good performance
- Some overheads on large-scale clusters for some applications
- Working on a new hybrid UD-RC design
- Delivers => better performance than RC or UD design

27

• Will be available in future releases

Asynchronous Progress

- Have added asynchronous progress (both at sender and receiver) in MVAPICH 1.0
- Allows to interrupt sender/receiver during long computation to handle communication
- Potential for overlap of computation and communication
- Carrying out performance evaluation with different applications to study the impact

Passive Synchronization for One-Sided Operations with Atomic Operations

 One-sided operations in MPI-2 semantics have two synchronization schemes

- Active
- Passive
- Have taken InfiniBand atomic operations into account to implement high performance and scalable passive synchronization
- Will be available in future releases

Conclusions

- MVAPICH and MVAPICH2 are being widely used in stable production IB clusters delivering best performance and scalability
- Also enabling clusters with iWARP support
- The user base stands at more than 580 organizations
- New features for scalability, high performance and fault tolerance support are aimed to deploy large-scale clusters (20K-50K) nodes in the near future

Acknowledgements

Our research is supported by the following organizations

Current Funding support by

• Current Equipment support by

Acknowledgements

- Current Students
 - L. Chai (Ph.D.)
 - W. Huang (Ph.D.)
 - M. Koop (Ph.D.)
 - R. Kumar (M.S.)
 - A. Mamidala (Ph.D.)
 - S. Narravula (Ph.D.)
 - R. Noronha (Ph.D.)
 - G. Santhanaraman (Ph.D.)
 - K. Vaidyanathan (Ph.D.)
 - A. Vishnu (Ph.D.)
- Current Programmers
 - S. Rowland
 - J. Perkins

- Past Students
 - P. Balaji (Ph.D.)
 - D. Buntinas (Ph.D.)
 - S. Bhagvat (M.S.)
 - B. Chandrasekharan (M.S.)
 - W. Jiang (M.S.)
 - S. Kini (M.S.)
 - S. Krishnamoorthy (M.S.)

- J. Liu (Ph.D.)
- S. Sur (Ph.D.)
- J. Wu (Ph.D.)
- W. Yu (Ph.D.)

Web Pointers

MVAPICH Web Page http://mvapich.cse.ohio-state.edu/

E-mail: panda@cse.ohio-state.edu