Distributed Visualization and Data Resources Enabling Remote Interaction and Analysis

Scott A. Friedman UCLA Institute for Digital Research and Education

www.openfabrics.org

Motivating Challenge

Remote access to visualization cluster

- Limited resources (\$) for development
 - Re-use as much exiting IB (verb) code as possible (iWarp)
- Leverage existing 10G infrastructure (UCLA, CENIC)
- Use layer 3
- Pacing critical for consistent user interaction

Remote access to researcher's data

- Same limitations as above
- High performance retrieval of time step data
- Synchronized to modulo of rendering rate

Visualization Cluster

Hydra - Infiniband based

- 24 rendering nodes (48 nvidia 9800GTX+)
 - 1 high-definition display node
 - 3 visualization center projection nodes
 - 1 remote visualization bridge node*
- Research System primarily
 - High performance interactive rendering (60Hz)
 - Dynamic (on-line) load balancing
- System requires both low latency and high bandwidth
 - Perfect for Infiniband!

* We will return to this in a minute

Network Diagram

Remote Visualization Bridge Node

- Bridges from IB to iWarp/10G Ethernet
- Appears like a display node to cluster
 - No change to existing rendering system
- Pixel data arrives over IB, which
 - is sent using iWarp to a remote display node
 - uses same RDMA protocol
 - Same buffer used for receive and send (bounce)
 - Very simple in principle sort of...
 - TCP settings can be a challenge
- Time step data also passes through (opposite direction)
 - Distributed to appropriate rendering nodes

Data flow

Hydra visualization cluster

Example data set

Uncompressed video stream

• 20-60Hz at up to 2560x1600 ~ 1.8Gbps – 5.5Gbps

Time steps

- Time step size and rate determine flow
- 10000 steps at 20-60Hz at 16MB/step ~ 2.4Gbps 7.5Gbps

Actual visualization

- Interactive 100M particle n-body simulation
- 11 unique processes
- Performance measurements are internal
 - Summaries are displayed at completion of run

Running Demo

Future Work

- Latency is a non-issue at UCLA (which is our main focus)
 - ~60 usec across campus
- Longer latencies / distances are an issue
 - UCLA to UC Davis ~20ms rtt (CENIC)
 - UCLA to SC07 (Reno) ~14ms rtt (CENIC/NLR)
 - UCLA to SC08 (Austin) ~30ms rtt (CENIC/NLR)
- Frames and time step data completely in-flight (at high frame-rates)
 - Not presently compensating for this
- Minimizing latency important for interaction
 - Pipelining transfers helps hide latency: lat' = (lat / chunks) chunks + 1

chunks = 2 : lat = 1.5

Lessons Learned

TCP nature of iWarp (some layer 3 related)

- Congestion control wreaks havoc on interaction / latencies
- Reliability
 - Not needed for video frames
 - Maybe needed for data (depends on application)
- Buffer tuning headache
- Layer 9 issues
- Better to use UDP?
 - Is there an unreliable iWarp?
- Dedicated/Dynamic circuits?
 - Obsidian Longbow IB extenders (haven't tried this)
 - Understand there may be an IP version out there? (not iWarp, but...)

Questions?friedman@ucla.edu