Open Fabrics For Windows Panel

Eric Lantz (<u>elantz@microsoft.com</u>) Senior Program Manager, HPC team, Microsoft Corp.

www.openfabrics.org

- Goals
- Using HPC in new ways
- Proofpoints
 - Performance
 - Case Studies
- HPC cluster as part of a larger picture

OFA WinOF is central to MS's HPC effortsMS HPC: Topics of Interest

➢Goals

- Traditional HPC market
 - Everything to get started is in the "box"
- Using HPC in new ways:
 - CCP Games 40,000 players in single virtual environment
 - Service Oriented Architecture
 - cluster as a web service
 - Workgroup clusters (100's of nodes)
 - Simple install/maintenance
 - Integration with enterprise networks
- >Released: September 2008

0.	9 -	(H H) =							M	lonte Carlo Risk E	xample C(CC Sec.xls [Co	mpatibility	Mode] - Microsoft	Excel									- = >
9	Home	Insert	Page L	ayout Fo	ormulas	Data Rev	iew Viev	N															0.	- = x
-	X Cut		Factor		il a la			A		Parente .		-	HTD.		1	Concession and Concession			-	PER 1	Σ AutoSum	- A-	49	
-	Copy		Arial	* 10	· A A		- W	Wrap Tex	6	General	*			Normal	Bad	Good	-	Ē			Fill +	ZI	uro -	
Paste	J Forma	at Painter	BI	<u>u</u> -	🐴 - <u>A</u> -			Merge &	Center -	\$ - % ,	€.0 .00 0.€ 00.	Conditional	Format	Neutral	Calculation	Check Cell	-	Insert	Delete	Format	Q Clear *	Sort &	Find &	
	Clipboard	5		Font	r		Alignm	ient	tu.	Number	5	r ormatting	as fable	1	Styles				Cells		-	Editing	Select	
	M28	•	6	fx																				:
	A	В	C	D	E	F	G	Н	1	J	К	L		М	N	0	P		Q	R		S	T	U
	101															II								-
1	MO	NTE C	ARL	D SIM	JLATIC	ON FOR	A OP	TIONS I	PORTI	FOLIO														
2																								
3	Calaad Dava	То	horizon	At	horizon	Total				hara Quantition	Stock	Option												
5	Trading Days	10			10	21			2	nare audinuies	-400	-400												
6 1		0.03968		T-t	0.04384	0.083518 K=		94																
8	s SQRT(t)=	0.07371		PV(T)=	0.997312	3- [=		6.14%																
9	mu * t =	0.00236		PVDiv(T)= 1.000000																			
11 1	nitial Stock P	rice	\$ 93.	900																				
12	99% VAR																							
14																_								
15	Iteration No	N(0,s)	Stock	P In(S/K*P	V) N(d1)	N(d2) Opt	tion Price S	tock Value Opt	ion Value	Portfolio Value	5				5.00	A	proach:			Delta-N	ormal Delta-(Gamma		
16		1 0.06422	\$ 100.	128 0.0658	44 0.81142	0.78963 \$	0.840 \$	(40,051) \$	(336) 3	(40,387) (40,381)			A	verage	\$ (39,234)			Delta:		-0.4	62366			
18		3 -0.0555	\$ 88.	828 -0.0538	96 0.25722	0.23271 \$	5.951 \$	(35,531) \$	(2,380)	(37,912)			000/		¢5 407			Gamina		0.0.	33304			
19 20		4 0.17506	\$ 111. \$ 84	864 0.1766	85 0.98939 18 0.08939	0.98700 \$	0.032 \$	(44,746) \$ (33,663) \$	(13) 5	6 (44,759) 6 (37,604)			99%	SI WC Var	ə ə ,421	5	nek		-40	Deltas	00.00			
21		6 -0.0353	\$ 90.	645 -0.0336	53 0.34737	0.31902 \$	4.682 \$	(36,258) \$	(1,873)	(38,131)			Rel - D	elta Normal	56.739%	0	otion		-40	0 1	84.95	-15.83		
22		7 0.05468	\$ 99.	177 0.0563	06 0.77663	0.75265 \$	1.035 \$	(39,671) \$ (34,101) \$	(414) 5	(40,085) (37,650)								Net Delt Stock P	a:	-21	5.054			
24		9 -0.0149	\$ 92.	511 -0.0132	72 0.44783	0.41717 \$	3.557 \$	(37,005) \$	(1,423)	(38,427)								Volatility	r.	0.0737	05764			
25 26	1	0 -0.0211	\$ 91. \$ 89	942 -0.0194 622 -0.0450	47 0.41671 06 0.29530	0.38655 \$	3.880 \$ 5.377 \$	(36,777) \$ (35,849) \$	(1,552) 5	(38,329) (37,999)								Worst n	999 nove	% <u>2</u>	16 10			
27	1	2 -0.054	\$ 88.	962 -0.0523	95 0.26346	0.23863 \$	5.852 \$	(35,585) \$	(2,341)	(37,926)					• 10									
28	1	-0.0725	\$ 87.	330 -0.0709 701 0.0912	06 0.19215	0.17156 \$	7.114 \$	(34,932) \$ (41,080) \$	(2,846) 3	5 (37,778) 5 (41,263)		70			<u>l</u>			VAR		\$ 3	3,462 \$	5,515	1	
30	1	5 -0.065	\$ 87.	988 -0.0634	07 0.21950	0.19714 \$	6.592 \$	(35,195) \$	(2,637)	(37,832)														
31 32	1	16 0.03709 17 -0.0005	\$ 97. \$ 93.	448 0.0387 851 0.0011	14 0.70378 07 0.52121	0.67628 \$ 0.49010 \$	1.483 \$ 2.867 \$	(38,979) \$ (37,540) \$	(593) 5	(39,572) (38,687)														
33	1	8 0.02913	\$ 96.	675 0.0307	55 0.66760	0.63881 \$	1.725 \$	(38,670) \$	(690)	(39,360)														
5506	6549	0.005/5	\$ 94.	442 0.0073	42 0.18578	0.16564 \$	7.244 \$	(34,868) \$	(1,037) :	(30,014)														-
5507	6549	-0.2094	\$ 76.	159 -0.2077	82 0.00434	0.00344 \$	17.596 \$	(30,464) \$	(7,039)	(37,502)														
5508 5509	6549	-0.0552	\$ 88. \$ 93.	859 -0.0535 640 -0.0011	51 0.25865 50 0.50967	0.23406 \$	5.928 \$ 2.969 \$	(35,544) \$ (37,456) \$	(2,371) 5 (1,188) 5	(37,915) (38,643)														
5510	6549	-0.0525	\$ 89.	096 -0.0508	88 0.26981	0.24466 \$	5.754 S	(35,638) \$	(2,302)	(37,940)														
5511 5512	6549 6549	-0.0443	\$ 89. \$ 87.	831 -0.0426 496 -0.0690	04 0.19888	0.27890 \$	5.231 \$ 6.980 \$	(35,932) \$ (34,999) \$	(2,092) 9 (2,792) 9	(38,025) (37,791)														
5513	6549	-0.069	\$ 87.	640 -0.0673	67 0.20479	0.18336 \$	6.866 \$	(35,056) \$	(2,746)	(37,802)														
5515	6550	0 -0.0287	\$ 91.	245 -0.0270	56 0.37909	0.34980 \$	4.300 \$	(36,498) \$	(1,720) \$	(38,218)														
5516	6550	0.00761	S 94.	618 0.0092 413 0.0070	40 0.56256	0.53166 \$	2.515 \$	(37,847) \$ (37,765) \$	(1,006) 9	(38,853)														
5518	6550	03 0.18563	\$ 113.	053 0.1872	53 0.99265	0.99090 \$	0.022 \$	(45,221) \$	(9) 5	(45,230)														
5519 5520	6550	04 -0.0952 05 -0.0064	\$ 85. \$ 93	370 -0.0936 300 -0.0047	09 0.12281 86 0.49108	0.10766 \$	8.769 \$ 3.139 \$	(34,148) \$ (37,320) \$	(3,507) 9 (1,256) 9	(37,655) (38,575)														
5521	6550	6 -0.0732	\$ 87.	271 -0.0715	87 0.18977	0.16934 \$	7.162 \$	(34,908) \$	(2,865)	(37,773)														
5523	6550	0.0138	\$ 92. \$ 105.	980 0.1226	0.45328 51 0.94645	0.42254 \$	3.503 \$ 0.193 \$	(37,044) \$ (42,392) \$	(1,401) 5 (77) 5	(38,445) (42,469)														
5524	6550	0.04056	\$ 97.	787 0.0421	89 0.71900	0.69212 \$	1.385 \$	(39,115) \$	(554) 5	(39,669)														
5526	6551	-0.0252	\$ 84.	562 -0.1031	13 0.09976	0.08677 \$	9.486 \$	(33,825) \$	(3,795) 5	(30,208)														
5527	6551	2 0.00344	\$ 94. \$ 85	224 0.0050	68 0.54140 76 0.11549	0.51036 \$	2.692 \$	(37,689) \$ (34,050) \$	(1,077) 5	(38,766)														
5529	6551	4 -0.0016	\$ 93.	750 0.0000	26 0.51569	0.48458 \$	2.915 \$	(37,500) \$	(1,166) 5	(38,666)														
5530	6551	5 0.10638 6 -0.0344	\$ 104.	440 0.1080 721 -0.0328	09 0.92273	0.91080 \$	0.293 \$	(41,776) \$	(117) 9	(41,893) (38,141)														
5532	6551	0.03513	\$ 97.	257 0.0367	56 0.69505	0.66721 \$	1.540 \$	(38,903) \$	(616)	(39,519)														
5533 5534	6551 6551	-0.1193 19 0.00603	\$ 83. \$ 94.	468 0.0076	30 0.07091 59 0.55456	0.06093 \$ 0.52360 \$	10.602 \$ 2.581 \$	(33,337) \$ (37,787) \$	(4,241) 5 (1,033) 5	(37,578) (38,820)														
5535	6552	-0.0399	\$ 90.	224 -0.0383	12 0.32558	0.29800 \$	4.962 \$	(36,089) \$	(1,985)	(38,074)														
536	6552	-0.0892	\$ 85.	667 -0.0875	/6 0.13924	0.12267 \$	8.320 \$	(34,355) \$	(3,328)	(37,682)	_						_	_	_	_				

4

H + + H Simulation / BSModel / 🖏

> Performance

#10: Shanghai Supercomputer Center, Shanghai, China

180.6 TeraFLOPS on 31,200 cores at 77.5% efficiency - with commodity hardware.

 #23: National Center for Supercomputing Applications, Illinois, USA 68.5 TeraFLOPS on 9,472 cores at 77.7% efficiency NetworkDirect ran hour-after-hour at full scale while we tuned.
 #40: UMEA University, Sweden 46 TeraFLOPS on 5,376 cores at 85.5% efficiency Best efficiency score at the time for an x86 architecture cluster on the Top 500 list- regardless of Operating System.

#100: Aachen University, Germany 18.8 TeraFLOPS on 2,096 cores at 76.5% efficiency Matched the best Linux efficiency on this cluster but with simpler cluster mgmt

Case Studies

 <u>http://www.microsoft.com/hpc/en/us/</u> <u>case-studies.aspx</u>

HPC as Part of a Larger Picture

- Parallel compute initiative
 - Scale on core to many to many machines
 - <u>http://msdn.microsoft.com/en-us/</u> <u>concurrency/default.aspx</u>
- Enterprise mgmt via System Center
 - <u>http://www.microsoft.com/systemcenter</u>

arallel Computing Initiative MSDN Magazine Events and Webcasts MSDN Subscriptions

Parallel Computing Initiative

make a project no toth nance and managed cold developen to safely and productively built robust, scalable and response applications specific photolete development of the scalable specific photoleter and the specific photoleter and immersive personal computing specific photoleter and specific photoleters. It is also and a specific photoleter and specific photoleters and specific photoleters and and and specific photoleters and specific photoleters. The specific photoleters and specific photol

icrosoft's goal is to increase productivity by encapsulating complexity, so developers can focus on solving business problems.

Parallel Computing Platform	High Performance Computing	Microsoft Resear
For both native and managed developers, Microsoft plana to deliver a comprehensive and integrated solutionistick including a concurrency runtime, programming models, language extensions, librarises and tools that will make it simpler for developers to write corned, scalable and responsive parallel applications.	High Renformance Computing has become a fundamental enabler of involution by providing designated compute resources to solve complex simulations and long-running calculations. • Solutions • Community	Microsoft Research basic and applied m and software engin enhance the user e devices, reduce the maintaining softwar technologies. Micror openly with college broadiv advance th
Community		Universal Paralle
		Feculty Summit:

What's new in the HPC Pack 2008?

Typical Cluster Configuration

WinOF Stack Is Central

- WinOF leverages our dev efforts & focuses our testing
- OEMs demand proof points before committing fully
 - WinOF "concentrates" our experience.
- **Breadth** ND, WSD, IPoIB, SRP, uDAPL, Tools
- Simplicity One stack that works on all IB hardware ??and iWARP too??

MS HPC: Topics of Interest

Improved OpenSM

- Better diagnostics
 - Closer parity w/ Linux tools
 - Simpler, more integrated results
- Network Boot (& PXE boot)
- Faster IPoIB (connection-based)
- > NDIS6 (currently at NDIS5.x)
- Clearer understanding of iWARP/IB delivery
- Windows Logo offered for organizations (OFA)
- Windows is part of OFA InterOp testing

www.openfabrics.org

Interpreting vstat

Cluster HPCMETAHN01 - HPC	Cluster Manager									
File View Actions Optio	ns <u>Go H</u> eip)								
; 😋 <u>B</u> ack 🐑 <u>F</u> orward <u>N</u> avigation	on Pane 📓 Acti	ions								
Diagnostics	Test Resu	ts (38)							Actions	×
Tests	Filter: Test su	lite	Failed node	- Last updated	- - ×				Pivot To	
Scheduler	-				3 9 9				Failed Nodes of the Test	
Services	Test Name	F	Result	Test Suite	Target	Last Updated		^	Progress of the Test	
- Connectivity	MPI Ping-Po	ong: Lightwe S	ouccess	Performance	22 nodes	9/19/2008 2:11:40 PM		=		
	A MPI Ping-Po	ong:Quick V	Vaming	Performance	22 nodes	9/19/2008 2:11:11 PM			Diagnostics	•
Performance	SUA Model	Latency S	Duccess	Bofomanoo	23 nodes	9/5/2008 6:49:43 PM			Cancel Test	
- Test Results	MPT Ping-Po	ong:Quick 3	ailure	Performance	22 nodes	9/5/2008 6:18:35 PM			🗙 Clear Alert	
Running	All Services	Running S	Success	Services	23 nodes	9/5/2008 6:18:27 PM			Rerun Test	
Success	MPI Ping-Po	ong: Lightwe F	ailure	Performance	HPCA1CN03	9/5/2008 6:01:23 PM			Evport Results	
Warning	MPI Ping-Po	ong: Lightwe F	ailure	Performance	HPCA1CN03	9/5/2008 5:56:10 PM			- Export Results	
Failure	MPI Pina-Pa	ona:Liahtwe F	ailure	Performance	HPCA1CN03	9/5/2008 5:34:52 PM		*	Help Resources	•
FailedToRun	MPI Ping	-Pong: Quick (Check					×	Diagnostics	
Complete	Result								Understanding Diagnostic	Tests
Temporary View									Running Diagnostic Tests	
	Europan						Warning		Understanding Test Result	s
	Junnary	y					warning		Filtering Test Results	
	A "Warning	" assessment ind	icates that at least one no	de is performing poorly rela	tive to the other nodes in the clu	ster. A poorly performing node n	neets BOTH of the		_	
	following cri	iteria:								
	Average lat	tency/throughpu	t over all network links for	the node is at least one sta	ndard deviation away from the m	nean value for the cluster AND		=		
	Latency is a	at least 20% high	er or throughput is at leas	t 20% lower than the cluste	er mean. This avoids unwarrante	d Warnings on highly-uniform du	ister networks.			
	Latency is at least 20% nigner or throughput is at least 20% lower than the cluster mean. This avoids unwarranted warnings on highly-uniform duster networks.									
	Result Summary									
	This table s	This table summarizes the test results for the nodes.								
	Peculte	No. of Nodes								
	Kesuits	no. or noues								
	Warning	4								
	Success	18								
		10								
							-			
	Latency 9	5ummary					Warning 🙆			
	Average =	= 87.894 usecs								
Std Dev = 44.304 usecs										
	Best Link =	= 53.551 usecs (HPCA1CN03 <-> HPCA1Ch	105)						
R Configuration	Worst Link = 258,291 usecs (HPCA1CN06 <-> HPCA1CN21)									
	Variability = High									
Node Management	Packet size for determining latency: 4 Bytes									
😑 Job Management	Link Latence									
LINK Latency Histogram This table shows the distribution of measured ping-pong latencies for all node-to-node communication links in the duster.										
Diagnostics				_						
Charts and Reports	Lower Be	ound (usecs)	Upper Bound (usecs)	Number of links meas	ured within this interval					

Cluster Sanity Testing

> Upcoming toolpack tools can help here

Welcome Configuration Network Setup Node Selection Initial Parameters Turning Configuration Turning Process Yes MARLIN-C2 MARLIN-C3 MARLIN-C3 MARLIN-C3 MARLIN-C3 MARLIN-C3 MARLIN-C3 MARLIN-C3 MARLIN-C3 MARLIN-C3 MARLIN-C4 MARLIN-C4 MARLIN-C4 MARLIN-C4 MARLIN-C4 MARLIN-C4	Linpack Tuning Wizard Tuning Linpac Welcome Configuration Network Setup Node Selection Initial Parameters Tuning Configuration Tuning Process Results	ck 1900 GFlops 1800 GFlops 1800 GFlops 1700 GFlops 1500 GFlops 1500 GFlops 1200 GFlops 1200 GFlops 1200 GFlops 1200 GFlops 1200 GFlops 500 GFl	€ Help 1549.00 1551.00 1553.00 GOAL: 1423.25
Verifying cluster integrity Advar < Previous Next >		Current status: Finished Best performance found: 1553 GFlops Best efficiency found: 81.49% Last performance: 1546 GFlops Current job progress: (below)	Return to Simple View Parameter Name Value N 241572 NB 164 PMAP 0 P 16 Current job end time: unknown

🖉 Cluster HPCMETAHN01 - HPC Cluster Manager										
<u>File View Actions Option</u>	ons <u>G</u> o <u>H</u> elp									
GBack Dervard Navigati	on Pane 🔮 Actions									
Node Management	ComputeNode	S (23)								
Nodes (24) By Group	List Heat Map								Search nodes	by name 🔎
By Group	M <u>e</u> tric: Context swi Cortext swi Cores in use Disk Queue Disk Throug Free Disk Sp Memory Par Running Jot Running Ta	tches / second tches / second E Length Jpput (Bytes/second) Jace (%) ging (Hard Faults/secor OS	Add to heat ma	CPU Us CPU Us le Physical Memory (I etwork Usage (Bytes/	Customize metric di	<u>iplay</u> Zoo <u>m</u> ▼				
Draining (0) Removing (0) Rejected (0)	System calls WCF Broker WCF Failed	s / second Calls / second Broker Calls / second	100.00	100.00	100.00	100.00	100.00	100.00	100.00	
By Node Template Default ComputeNod HeadNodeTemplate	1508.00	1554.00	1543.00	1545.00	1577.00	1571.00	1545.00	1558.00	1556.00	
By Health WOK (23) Unreachable (0)	527.59	527.65	527.61	527.64	527.63	527.62	527.64	420.01	457.27	
- Ongoing Operation (1	HPCA1CN01	HPCA1CN02	HPCA1CN03	HPCA1CN04	HPCA1CN05	HPCA1CN06	HPCA1CN07	HPCA1CN08	HPCA1CN09	
Diagnostic Failed (0) Provisioning Failed (0 Temporary View	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	
- Operations - Archived - Committed	1546.00	1552.00	1543.00	1543.00	1568.00	1564.00	1381.00	1559.00	1556.00	
Executing Failed Reverted	560.16	527.64	527.64	527.57	527.60	527.64	527.65	570.02	971.51	
Temporary View	HPCA1CN10	HPCA1CN11	HPCA1CN12	HPCA1CN13	HPCA1CN14	HPCA1CN15	HPCA1CN16	HPCA1CN17	HPCA1CN18	
	100.00	100.00	100.00	0.00	100.00					
	1560.00	1575.00	1343.00	0.00	1356.00					
	527.62	570.05	439.69	0.00	527.62					
٩	HPCA1CN19	HPCA1CN20	HPCA1CN21	HPCA1CN22	HPCA1CN23					
Configuration	-									
Node Management										

📄 Job Management

Diagnostics
Charts and Reports

MS HPC: Topics of Interest

Improved OpenSM

- Better diagnostics
 - Closer parity w/ Linux tools
 - Simpler, more integrated results
- Network Boot (& PXE boot)
- Faster IPoIB (connection-based)
- > NDIS6 (currently at NDIS5.x)
- Clearer understanding of iWARP/IB delivery
- Windows Logo offered for organizations (OFA)
- Windows is part of OFA InterOp testing

OTHER INTERESTING BITS

www.openfabrics.org

- Complete, integrated platform for computational clustering
- Built on top the proven Windows Server 2008 platform
- Integrated development environment

Evaluation available from http://www.microsoft.com/hpc

NetworkDirect- 3 Points to Remember

NetworkDirect is fast- really fast

HPC Server 2008 stack produced world-class cluster efficiencies in June 2008 Top500 runs at: NCSA (#23), UMEA (#39), Aachen (#100) and Nov2008 Top500: Shanghai Supercomputing Center (#10)

And Stable

The MS HPC team have significant mileage on ND-enabled clusters

- 2,000 cores routinely
- max. tested to date: 30,000 cores

for hours/days without fail (MPI failures are easy to spot! ;)

And Logo Tested

MS HPC, Core Networking, and Windows Logo teams have created a logo program for NetworkDirect drivers. The first submissions are coming in now for:

- Infiniband vendors (3)
- 10GigE vendors (2)

NetworkDirect

A new RDMA networking interface built for speed and stability

- Verbs-based design for close fit with native, high-perf networking interfaces
- Equal to Hardware-Optimized stacks for MPI micro-benchmarks
- NetworkDirect drivers for key highperformance fabrics:
 - Infiniband [available now!]
 - 10 Gigabit Ethernet (iWARP-enabled) [available now!]
 - Myrinet [available soon]
- MS-MPIv2 capable of 4 networking paths:
 - Shared Memory between processors on a motherboard
 - TCP/IP Stack ("normal" Ethernet)
 - Winsock Direct (and SDP) for sockets-based RDMA
 - New NetworkDirect interface

Version Comparison

Feature	Windows Compute Cluster Server 2003	Windows HPC Server 2008
Operating system	Windows Server 2003 SP1	Windows Server 2008 HPC Edition, Standard, Enterprise, Datacenter
Processor Type	X64 (AMD64 or Intel EM64T)	X64 (AMD64 or Intel EM64T)
Memory	32 GB (Compute Cluster Edition)	128 GB (HPC Edition)
Node Deployment	Remote Installation Services(RIS)	Windows Deployment Services
Head Node Availability	N/A	Windows Failover Clustering and SQL Server Failover Clustering
Management	Basic node and job management	Integrated node and job management, grouping, monitoring at-a-glance, diagnostics
Network Topology	Network Configuration Wizard	Improved Network Configuration Wizard
MS-MPI	Winsock Direct-based	Network Direct-based. New shared memory implementation for multicore processors
Scheduler	Command line or GUI	Integrated in management console, with full support for Windows PowerShell scripting and legacy command-line UI scripts from v1. Greatly improved speed and scalability
Programmability	Support for Batch or MPI based jobs	Added support for interactive Service Oriented Applications (SOA) using the Windows Communication Foundation (WCF)
Reporting	N/A	Integrated into Management console
Monitoring	Rely on Windows. No cluster specific support.	Heat map on cluster or node group. Per node charts. Cluster-wide performance overview
Diagnostics	N/A	In the box verification tests and performance tests Store, filter, and view test results and history

- Microsoft HPC Web site Evaluate Today!
 - http://www.microsoft.com/hpc
- Windows HPC Community site
 - http://www.windowshpc.net
- Windows HPC Techcenter
 - <u>http://technet.microsoft.com/en-us/hpc/default.aspx</u>
- HPC on MSDN
 - <u>http://code.msdn.microsoft.com/hpc</u>
- Windows Server Compare website
 - http://www.microsoft.com/windowsserver/compare/default.mspx