Routing, Deadlocks and all that

Issues from the deployment of the Redsky machine Bob Pearson, Dave McMillen System Fabric Works

www.openfabrics.org

Credits

- Matt Bohnsack Sandia
- Doug Doerfler Sandia
- Line Holen Sun
- Lars Paul Huse Sun
- Bjorn-Dag Johnson Sun
- Dave McMillen SFW
- John Naegle Sandia

- Rob Netzer SFW
- Bob Pearson (me) SFW
- Sven-Arne Reinemo Simula
- Hal Rosenstock
- Jim Schutt Sandia
- Eitan Zahavi Mellanox

REDSKY

www.openfabrics.org

Redsky

C48 Rack

Z Axis Wiring

Uses 1 of the 5 12X links out of each switch

Uses 2 more of the 5 links

X Axis Wiring(1)

(recall the Y axis uses racks in pairs)

Uses the final 2 links

X Axis Wiring(2)

6x6x8 Torus

000000 000000 000000 00000

Up to 12 nodes per switch

000000 000000

www.openfabrics.org

IB FABRIC DEADLOCKS

www.openfabrics.org

Example Deadlocked Loop

Square IB Network

DOR Routing

2D Open Mesh Example

Shortest Distance DOR

- > Order the dimensions, e.g. X < Y < Z
- Find all shortest paths from A to B
- Select path that moves in the lowest (selected) dimension first and then the next and so on

DOR Routing Example

Note forward and return paths are different in general

DOR Routing Example

Identical return paths would lead to deadlocks

- Shortest distance DOR routing solves 'local' deadlock problem
- No credit loops in Cartesian meshes, of any dimension
- > But! Can have "topological" credit loops
 - Overlapping locally 'legal' path segments can combine to create credit loop

Closed or periodic boundary conditions

Paths around circumference overlaps 'legal' DOR path segments

Mesh is locally Cartesian. No local credit loops

- Large scale structures and local defects can lead to credit loops even if DOR based routing is used
- Defects force DOR to be violated or paths to be missing.
- However, we can eliminate credit loops by using VLs
 - VLs add additional buffer queue resources

DEADLOCK AVOIDANCE WITH LASH

Lash

Summary

- Shortest paths between points are assigned to lanes (SL=VL so no distinction) in an arbitrary order (greedy, depends on order found)
- Lane assignment is communicated through SA path records, nothing is changed in the switches, honor system
- Reverse paths must be in same lane (lane(A->B) = lane(B->A)) by IBA reqmt.
- > As many lanes as required are used until you run out
- Algorithm limited by number of VLs (8 for ConnectX)

Lash for Redsky?

000000 000000 000000 000000 000000

000000 000000 000000 000000

00000

13 VLs!!

www.openfabrics.org

Mesh Patch for Lash

- Handle multiple links between switches
- Discover geometry automatically
- Re-sort links to DOR order with sign inversion
- Re-sort switches to dimension order

Mostly upstream now

Mesh Algorithm (1)

Mesh Algorithm (2) **OPENFABRICS** ALLIANCE (0,2) (0,1) -X +Y +X Coordinates 5. & size 13 DOR 5 52 relabeling 6. 2 21 of ports 74 3 5 Sort switches in odometer 6 6 7. 8 8 order

Lash+Mesh for Redsky

000000 000000

000000 000000 000000 000000

000000 000000 000000 000000 000000

000000 000000 000000 000000

6 VLs

www.openfabrics.org

Lash+Mesh with H/W Failures

Current algorithm tested against:

- All single/double link failures
- All single switch & switch pair failures
- ➢ Result:
 - All single link failures & switch failures route in 7 VLs or less
 - 0.2% of double link failures route in 8 VLs
 - 0.04% of double link failures route in 9 VLs
- We are working to improve this (better seed choice)

- As size of 3D torus increases number of VLs increases up to a limit
 - 2-3 X increases in size lead to 7 VLs
 - Really big 3D torus leads to 8 VLs
 - HW failures are extra!

MULTICAST DEADLOCK ISSUES

(a la opensm)

Multicast

Multicast

www.openfabrics.org

Multicast

Challenges

- Multicast can deadlock against other multicast traffic
- Multicast can deadlock against unicast traffic

Solution ideas

- Route all multicast groups using sub-trees of a single spanning tree, can choose spanning tree that does not deadlock against DOR!!
- Collapse overlapping multicast groups into common spanning tree, (but IPoIB MC group spans every node so reduces to first answer)
- Move multicast to separate SL/VL

TYING IT ALL TOGETHER

www.openfabrics.org

Day One Redsky Configuration

- Lash+Mesh for "Good" unicast traffic SL=VL=1-6/7
 - Good apps plays by the rules, uses CM for SL determination
 - Tolerates many failures
- SL=VL=0 for "Bad" unicast traffic
 - Bad apps do not, many examples in stack
 - Can map SL0 to VL15 which drops packets
- Multicast SL=8, VL=0

All ULPs and mvapich and OpenMPI optionally are "good" apps Layout up and running on exemplar system

Work Remaining

- Change multicast routing algorithm to avoid deadlocks between MC groups
- Clean up remaining "Bad" apps
 - Many MAD based apps, SMSL usage, some point tools
- Improve link failure VLs in mesh
- Integrate Lash and QoS subsystems
 - Currently broken, needs more flexible management
- Graceful failure recovery
 - Lash incremental re-route, prevent large # of SL changes on HW failures
 - Implement unpath, repath or something else to kill paths on SL change

FUTURE DIRECTIONS

www.openfabrics.org

New Routing Algorithm

8 SLs and 2 VLs, explicit torus based algorithm

- Can create 2 QoS groups (uses all 16 SLs)
 - Use LMC=1 to create two DOR based routings, 'dual rails on one fabric'
 - Compatible multicast spanning tree

Work being done by Eitan Zahavi, Jim Schutt, Sven Arne and others

BACKUP SLIDES

www.openfabrics.org

1D example

Take shortest paths to destination (left or right) if path does not cross 'seam' take one VL if path crosses 'seam' take the other VL

1D example

Take shortest paths to destination (left or right) if path does not cross 'seam' take one VL if path crosses 'seam' take the other VL

1D example

Take shortest paths to destination (left or right) if path does not cross 'seam' take one VL if path crosses 'seam' take the other VL

- Choice of whether to use alternate lane is encoded in SL. Requires 2^D SLs for a D dimensional torus
- Only 2 VLs are required!

L=3 never deadlocks

L=4 isomorphic to 2x2

www.openfabrics.org

55

L=4 with DOR never deadlocks

L=4 isomorphic to 2x2

tori with L=4

≻2x4

Is equivalent to...

