
Open Fabrics Interfaces

Architecture Introduction

Sean Hefty

Intel Corporation

Current State of Affairs

• OFED SW was not designed around HPC

• Hardware and fabric features are changing
– Divergence is driving competing APIs

• Interfaces are being extended, and new APIs introduced
– Long delay in adoption

• Size of clusters and single node core counts greatly
increasing

• More applications are wanting to take advantage of high-
performance fabrics

2

OFED software
• Widely adopted low-level RDMA API
• Ships with upstream Linux but…

Solution

3

Design software interfaces that are
aligned with application requirements

Evolve OpenFabrics

Target needs of HPC

Support multiple interface semantics

Fabric and vendor agnostic

Supportable in upstream Linux

Enabling through OpenFabrics

• Leveraging existing open source community

• Broad ecosystem

– Application developers and vendors

– Active community engagement

• Drive high-performance software APIs

– Take advantage of available hardware features

– Support multiple product generations

4

Open Fabrics Interfaces
Working Group

OFIWG Charter

• Develop an extensible, open source framework and
interfaces aligned with ULP and application
needs for high-performance fabric services

• Software leading hardware
– Enable future hardware features

– Minimal impact to applications

• Minimize impedance match between ULPs and
network APIs

• Craft optimal APIs
– Detailed analysis on MPI, SHMEM, and other PGAS

languages

– Focus on other applications – storage, databases, …

5

Call for Participation

• OFI WG is open participation

– Contact the ofiwg mail list for meeting details

– ofiwg@lists.openfabrics.org

• Source code available through github

– github.com/ofiwg

• Presentations / meeting minutes available from

OFA download directory

6

Help OFI WG understand workload
requirements and drive software design

Enable..

7

Optimized software path
to hardware

•Independent of hardware
interface, version, features

Scalability High performance

App-centric
Extensible

Reduced cache and
memory footprint

•Scalable address
resolution and storage

•Tight data structures

Analyze application needs

•Implement them in a coherent,
concise, high-performance manner

More agile development

•Time-boxed, iterative development

•Application focused APIs

•Adaptable

Verbs Semantic Mismatch

8

Allocate WR

Allocate SGE

Format SGE – 3 writes

Format WR – 6 writes

Loop 1

Checks – 9 branches

Loop 2

Check

Loop 3

Checks – 3 branches

Checks – 3 branches

Direct call – 3 writes

Checks – 2 branches

50-60 lines of C-code 25-30 lines of C-code

generic send call

optimized send call

Reduce setup cost
- Tighter data

Eliminate loops and branches
- Remaining branches predictable

Selective optimization paths to HW
- Manual function expansion

Current RDMA APIs Evolved Fabric Interfaces

Application-Centric Interfaces

• Collect application requirements

• Identify common, fast path usage models

– Too many use cases to optimize them all

• Build primitives around fabric services

– Not device specific interface

9

Reducing instruction count requires a

better application impedance match

OFA Software Evolution

10

libfabric

FI Provider

IB Verbs

Verbs
Provider

Verbs Fabric Interfaces

Transition from
disjoint APIs

to a cohesive set
of fabric interfaces

RDMA CM

CM

uVerbs

Command

Fabric Interfaces Framework

• Take growth into consideration

• Reduce effort to incorporate new application

features

– Addition of new interfaces, structures, or fields

– Modification of existing functions

• Allow time to design new interfaces correctly

– Support prototyping interfaces prior to integration

www.openfabrics.org 11

Focus on longer-lived interfaces –

software leading hardware

Fabric Interfaces

12

Fabric Interfaces

Message
Queue

Control
Interface

RMA Atomics

Addressing
Services

Tag
Matching

Triggered
Operations

CM Services

Fabric Provider Implementation

Message
Queue

CM Services

RMA

Tag
Matching

Control
Interface

Framework defines
multiple interfaces

Vendors provide optimized
implementations

Addressing
Services

Atomics

Triggered
Operations

Fabric Interfaces

• Defines philosophy for interfaces and extensions

– Focus interfaces on the semantics and services

offered by the hardware and not the hardware

implementation

• Exports a minimal API

– Control interface

• Defines fabric interfaces

– API sets for specific functionality

• Defines core object model

– Object-oriented design, but C-interfaces

13

Fabric Interfaces Architecture

• Based on object-oriented

programming concepts

• Derived objects define

interfaces

– New interfaces exposed

– Define behavior of inherited

interfaces

– Optimize implementation

www.openfabrics.org 14

Control Interfaces

• Application specifies desired functionality

• Discover fabric providers and services

• Identify resources and addressing

fi_getinfo

• Open a set of fabric interfaces and
resources

fi_fabric

• Dynamic providers publish control
interfaces

fi_register

www.openfabrics.org 15

FI Framework

fi_getinfo fi_fabric

fi_register

Application Semantics

• Progress

– Application or hardware driven

– Data versus control interfaces

• Ordering

– Message ordering

– Data delivery order

• Multi-threading and locking model

– Compile and run-time options

www.openfabrics.org 16

Get / set using control interfaces

Fabric

Fabric Object Model

www.openfabrics.org 17

Fabric Interfaces

NIC

Physical Fabric

NIC NIC

Resource Domain Resource Domain

Event
Queue

Event
Counter

Active
Endpoint

Address
Vectors

Event
Queue

Event
Counter

Active
Endpoint

Address
Vectors

Passive
Endpoint

Event
Queue

Boundary of
resource sharing

Provider abstracts
multiple NICs

Software objects
usable across multiple

HW providers

Endpoint Interfaces

www.openfabrics.org 18

Type

Protocol

CM
Message Transfers

RMA
Tagged
Atomics

Triggered

Properties Interfaces

Endpoint

Communication interfaces

Software path to hardware
optimized based on
endpoint properties

Capabilities

Message Transfers
RMA

Tagged
Atomics

TriggeredAliasing supports multiple
software paths to hardware

Application Configured Interfaces

19

lg. msg RMA

NIC

Message Queue Ops RMA Ops

Endpoint

Communication type

Capabilities

Data transfer flags

sm. msg

inline send send write

read

Provider directs
app to best API sets

App specifies
comm model

Event Queues

www.openfabrics.org 20

Format

Wait Object

Context only
Data

Tagged
Generic

None
fd

mwait

Properties

Interface Details

Event
Queues

Asynchronous event
reporting

User specified
wait object

Compact
optimized data

structures

Optimize interface around
reporting successful operations

Domain

Event counters support
lightweight event reporting

Event Queues

www.openfabrics.org 21

read CQ optimized CQ

Generic
completion Op context

Send: +4-6 writes, +2 branches
Recv: +10-13 writes, +4 branches

+1 write, +0 branches

App selects
completion structure

Generic verbs
completion example

Application optimized
completion

Address Vectors

22

Store addresses/host names
- Insert range of addresses with single call

Start
Range

End
Range

Base LID SL

host10 host1000 50 1

host1001 host4999 2000 2

Share between processes

Enable provider optimization techniques
- Greatly reduce storage requirements

Reference entries by
handle or index
- Handle may be encoded

fabric address
Reference vector for
group communication

Example only

Fabric specific addressing
requirements

Summary

www.openfabrics.org 23

• These concepts are

necessary, not revolutionary

– Communication addressing,

optimized data transfers, app-

centric interfaces, future looking

• Want a solution where the

pieces fit tightly together

Repeated Call for Participation

• Co-chair (sean.hefty@intel.com)
– Meets Tuesdays from 9-10 PST / 12-1 EST

• Links
– Mailing list subscription

• http://lists.openfabrics.org/mailman/listinfo/ofiwg

– Document downloads
• https://www.openfabrics.org/downloads/OFIWG/

– libfabric source tree
• www.github.com/ofiwg/libfabric

– labfabric sample programs
• www.github.com/ofiwg/fabtests

24

mailto:sean.hefty@intel.com
http://lists.openfabrics.org/mailman/listinfo/ofiwg
https://www.openfabrics.org/downloads/OFIWG/

Backup

www.openfabrics.org 25

Verbs API Mismatch

26

struct ibv_sge {

uint64_t addr;

uint32_t length;

uint32_t lkey;

};

struct ibv_send_wr {

uint64_t wr_id;

struct ibv_send_wr *next;

struct ibv_sge *sg_list;

int num_sge;

enum ibv_wr_opcode opcode;

int send_flags;

uint32_t imm_data;

...

};

Application request

<buffer, length, context>

3 x 8 = 24 bytes of data needed

SGE + WR = 88 bytes allocated

Requests may be linked -
next must be set to NULL

Must link to separate SGL
and initialize count

App must set and provider
must switch on opcode

Must clear flags 28 additional bytes initialized

Significant SW overhead

Verbs Provider Mismatch

27

For each work request

Check for available queue space

Check SGL size

Check valid opcode

Check flags x 2

Check specific opcode

Switch on QP type

Switch on opcode

Check flags

For each SGE

Check size

Loop over length

Check flags

Check

Check for last request

Other checks x 3

19+ branches including loops

100+ lines of C code
50-60 lines of code to HW

Most often 1
(overlap operations)

Often 1 or 2
(fixed in source)

Artifact of API

QP type usually fixed in
source

Flags may be fixed or app
may have taken branches

Verbs Completions Mismatch

28

struct ibv_wc {

uint64_t wr_id;

enum ibv_wc_status status;

enum ibv_wc_opcode opcode;

uint32_t vendor_err;

uint32_t byte_len;

uint32_t imm_data;

uint32_t qp_num;

uint32_t src_qp;

int wc_flags;

uint16_t pkey_index;

uint16_t slid;

uint8_t sl;

uint8_t dlid_path_bits;

};

Application accessed fields

Provider must fill out all fields,
even those ignored by the app

Developer must determine if fields
apply to their QP

App must check both return code
and status to determine if a

request completed successfully

Single structure is 48 bytes
likely to cross cacheline boundary

Provider must handle all types of
completions from any QP

RDMA CM Mismatch

29

struct rdma_route {

struct rdma_addr addr;

struct ibv_sa_path_rec *path_rec;

...

};

struct rdma_cm_id {...};

rdma_create_id()

rdma_resolve_addr()

rdma_resolve_route()

rdma_connect()

Src/dst addresses stored per
endpoint

456 bytes per endpoint

Path record per endpoint

Resolve single address and
path at a time

All to all connected model for
best performance

Want: reliable data transfers, zero
copies to thousands of processes

RDMA interfaces expose:

Progress

• Ability of the underlying implementation to

complete processing of an asynchronous

request

• Need to consider ALL asynchronous requests

– Connections, address resolution, data transfers,

event processing, completions, etc.

• HW/SW mix

www.openfabrics.org 30

All(?) current solutions require
significant software components

Progress

• Support two progress models

– Automatic and implicit

• Separate operations as belonging to one of two

progress domains

– Data or control

– Report progress model for each domain

www.openfabrics.org 31

SAMPLE Implicit Automatic

Data Software Hardware offload

Control Software Kernel services

Automatic Progress

• Implies hardware offload model

– Or standard kernel services / threads for control

operations

• Once an operation is initiated, it will complete

without further user intervention or calls into the

API

• Automatic progress meets implicit model by

definition

www.openfabrics.org 32

Implicit Progress

• Implies significant software component

• Occurs when reading or waiting on EQ(s)

• Application can use separate EQs for control

and data

• Progress limited to objects associated with

selected EQ(s)

• App can request automatic progress

– E.g. app wants to wait on native wait object

– Implies provider allocated threading

www.openfabrics.org 33

Ordering

• Applies to a single initiator endpoint performing

data transfers to one target endpoint over the

same data flow

– Data flow may be a conceptual QoS level or path

through the network

• Separate ordering domains

– Completions, message, data

• Fenced ordering may be obtained using fi_sync

operation

www.openfabrics.org 34

Completion Ordering

• Order in which operation completions are

reported relative to their submission

• Unordered or ordered

– No defined requirement for ordered completions

• Default: unordered

www.openfabrics.org 35

Message Ordering

• Order in which message (transport) headers are
processed
– I.e. whether transport message are received in or out

of order

• Determined by selection of ordering bits
– [Read | Write | Send] After [Read | Write | Send]

– RAR, RAW, RAS, WAR, WAW, WAS, SAR, SAW, SAS

• Example:
– fi_order = 0 // unordered

– fi_order = RAR | RAW | RAS | WAW | WAS |
SAW | SAS // IB/iWarp like ordering

www.openfabrics.org 36

Data Ordering

• Delivery order of transport data into target

memory

– Ordering per byte-addressable location

– I.e. access to the same byte in memory

• Ordering constrained by message ordering rules

– Must at least have message ordering first

www.openfabrics.org 37

Data Ordering

• Ordering limited to message order size

– E.g. MTU

– In order data delivery if transfer <= message order size

– WAW, RAW, WAR sizes?

• Message order size = 0

– No data ordering

• Message order size = -1

– All data ordered

www.openfabrics.org 38

Other Ordering Rules

• Ordering to different target endpoints not defined

• Per message ordering semantics implemented

using different data flows

– Data flows may be less flexible, but easier to

optimize for

– Endpoint aliases may be configured to use different

data flows

www.openfabrics.org 39

Multi-threading and Locking

• Support both thread safe and lockless models

– Compile time and run time support

– Run-time limited to compiled support

• Lockless (based on MPI model)

– Single – single-threaded app

– Funneled – only 1 thread calls into interfaces

– Serialized – only 1 thread at a time calls into interfaces

• Thread safe

– Multiple – multi-threaded app, with no restrictions

www.openfabrics.org 40

Buffering

• Support both application and network buffering

– Zero-copy for high-performance

– Network buffering for ease of use

• Buffering in local memory or NIC

– In some case, buffered transfers may be higher-

performing (e.g. “inline”)

• Registration option for local NIC access

– Migration to fabric managed registration

• Required registration for remote access

– Specify permissions

www.openfabrics.org 41

Scalable Transfer Interfaces

• Application optimized code paths based on

usage model

• Optimize call(s) for single work request

– Single data buffer

– Still support more complex WR lists/SGL

• Per endpoint send/receive operations

– Separate RMA function calls

• Pre-configure data transfer flags

– Known before post request

– Select software path through provider
42

