Python RDMA

Management, Diagnostics and Testing

Presented By: Jason Gunthorpe - CTO Obsidian
Research
Date: OFA Monterey 2011-04-05

What is in it?

e RDMA device discovery:

for I 1n rdma.get devices(): print I.name;

e RDMA Verbs:

with rdma.get verbs (path.end port) as ctx:
print ctx.query device();

e |[B Management:

cpl = umad.SubnAdmGet (IBA.MADClassPortInfo);

Plus more!

Python RDMA

Obsidian Research Corp.

What is Python?

Python is a modern, very high level, multi-
paradigm programming language:

e Emphasis on readability and clarity

* Modern high level features: exceptions, garbage collection,
dynamic 'duck’ typing, closures

e Very popular for web development, finance, and for
system administration.

e Included by default and used in major Linux distributions
for many years

Python RDMA

Obsidian Research Corp.

Cognitive Dissonance

Python is slow!

RDMA is for high performance!
Why!1?1?

Sometimes correct and simple is more
important than fast..

... and good algorithms can help.

Python RDMA

Obsidian Research Corp.

Package Contents

e RDMA Device Discovery

e Definitions from the IBA

e |[IB MAD RPC handling and parallelism
 |B subnet topology database

e [ibibverbs interface (Pyrex)

e ibtool command line program

e Codegen'd and hand written documentation
e Test suite

Pure Python except for rdma.ibverbs!

GPL licensed

Python RDMA

Obsidian Research Corp.

Package Contents (2)

OFA Module
libibmad

libibumad
libibverbs
libibnetdisc
librdmacm
libibem
infiniband-
diags
1butils

perftest

Python RDMA

Python-rdma

Near 100% coverage via rdma.madtransactor and
rdma.lBA

100% coverage via rdma.umad

100% coverage via rdma.ibverbs (through Pyrex)

~80% coverage. No support for switch chassis grouping.
Not covered

Not covered

45 commands re-implemented, 2 un-implemented. Review
ibtool

Good coverage of the internal APIs but no coverage for the
user tools.

rdma_bw 1s implemented as an example.

Obsidian Research Corp.

$ ibtool rdma bw 127.0.0.1
path to peer IBPath(end port='mlx4 0/1',
DGID=GID('feB80::2:c903:9:1edd"),
DLID=1, MTU=4, packet life time=0,
SGID=GID('feB80::2:c903:9:1edd"),
SLID=1, dack resp time=15L, dgpn=524361L,
dgpsn=6645404, drdatomic=0,
rate=3, sack resp time=15L, sqpn=524360L,
sqpsn=1754047, srdatomic=0)
MR peer raddr=7£d268a9c000 peer rkey=8002200
1000 1terations of 1048576 1s 1048576000 bytes
3065.7 MB/sec

MT26428 using internal loopback, 2.8GHz 15-2300

Python RDMA

Obsidian Research Corp.

Re-implementation of infiniband-diags using Python as the
implementation language:

e One language
e (reater consistency
e Higher performance

Also:

e Test the Python RDMA core library

e Access the unique features of the Python RDMA via the command line
e Serve as programming examples

45 commands are implemented, > 90% complete

Python RDMA

Obsidian Research Corp.

Mostly looks the same:

$ ibtool ibaddr 7

GID fe80::17:77ff:feb6:2ca4 LID start 7 end 7

$ ibtool ibswitches

Switch : 0017:77ff:febb:2cad4d ports 2 "Obsidian
Switch : 0017:77ff:fef9:6e79 ports 2 "Obsidian
S ibtool smpquery -P 2 NI -D Q0,2

Node info: DR Path (0, 2)

BasSeVerS: @i i ittt ittt et e eneeens 1
L RSBV 8 v v e v s s n s s o ssonsnssssnsas 1
NodeT YR ittt ittt i eeseeesesnseses 2
NUMP O LSt s i i ittt t ettt et eeeennnnns 2
SystemGuid:ottt eeeneens 0017:77ff:fef9:

Python RDMA

Obsidian Research Corp.

Some are new:

$ ibtool perfquery --vl-xmit-wait 9
Port counters: Lid 9 (fe80::17:77ff:fef9:6e79)

PortSelech .ttt it it ittt oo ennneeas 1
CounterSeleCh v ittt eeeeneneesas O0x0000
PortVLXmitWailit[0] 1. v e e i ot e eeneens 606

$ ibtool subnet diff ref

Current subnet has 4 end ports, reference subnet
All end ports 1n the current subnet are i1in the
All end ports in the reference subnet are in th
Current subnet has 3 nodes, reference subnet has
All nodes 1n the current subnet are 1n the refe

A

Python RDMA

Obsidian Research Corp.

Section 8 of the Python RDMA manual details the various
differences between ibtool and infiniband-diags:

e Greater alignment with the IBA, PR usage, timeout computations, support for
routed GIDs, etc

e Everything supports GID/GUID/LID/DR path as a TARGET

e Better diagnostics and debug output, including packet decodes

e —-sa and support for GMP over verbs lets ibfool return info without access to
/dev/umad

e LID and SA based subnet discovery options
e Consistent support for a discovery caching file

Python RDMA

Obsidian Research Corp.

Library Tour - Device Discovery

e rdma.devices module - trundles through sysfs and gets devices, end ports.

e Common basis for all other modules - umad and ibverbs are all opened based
on these objects.

e Find devices by string:

Format Example
device mix4 0
Node GUID | 0002:¢903:0000:1491

e Find ports by string:

Format Example
device mix4 0 (defaults to the first port)
device/port = mix4 /1
Port GID fe80::2:¢903:0:1491
Port GUID @ 0002:c903:0000:1491

Python RDMA

Obsidian Research Corp.

Library Tour - Device Discovery (2

Library features flow into ibtool:

$ ibtool ibaddr -P fe80::2:c903:0:14a6 9 -d
D: Using end port mlx4 0/2 fe80::2:c903:0:14a6
D: SMP Path 10 -> 9 SL=0 PKey=0xffff DQPN=0
IBPath (end port='mlx4 0/2', DLID=10,
SLID=10, dgpn=0, gkey=0x0,
sgqpen=0)
D: RPC MAD METHOD GET(l) SMPFormat (l.1)
SMPNodeInfo (17) completed to
'"Path 10 -> 9 SL=0 PKey=0xffff DQPN=Q'
len 2560.
D: RPC MAD METHOD GET(l) SMPFormat (l.1)
SMPPmrtInfm(Zl} cmmpleted to

| B > 1‘

Python RDMA

Obsidian Research Corp.

Library Tour - IBA

Structures and constants from the IBA:

e Starts out as XML describing the precise on-the-wire
structure layout

e Processed via script into Python classes with pack, unpack
and printer functions

e 106 structures from IBA

e Useful constants, value to string and string to value are
hand written

e Auto generate tricky things like
SAFormat.componentMask

Python RDMA

Obsidian Research Corp.

Library Tour - IBA (2)

Everything can be decoded and dumped:

S ibtool ibaddr 9 -dd
D: Reply MAD METHOD GET RESP(129) SMPFormat (1.1)

0 01010181 baseVersion=1l,mgmtClass=1,classVers

4 00000000 status=0,classSpecific=0

8 000079FF transactionID=134139628569652

12 DOE94434

+ data SMPNodelnfo
04 01010202 baseVersion=1l,classVersion=1l,nodeTy
68 001777FF systemImageGUID=GUID('0017:77ff:fef
12 FEF96E79
76 001777FF nodeGUID=GUID('0017:77ff:fef9:6e79"
80 FEF96E79
d /]

Python RDMA

Obsidian Research Corp.

Library Tour - IBA (3)

Dynamic language with introspection makes this dead easy:

$ ibtool query SubnAdmGetTable SANodeRecord \
-f nodeInfo.systemImageGUID=0017:77ff:fef9:0e7
Reply structure #0

LID . ¢ o e oo v e vt s esnsssesnstsensnssns 9
nodeInfo.NumPorts. ... 2
nodeInfo.SystemImageGUID......... 0017:77ff:fef
nodeInfo.PortGUID. ... v v, 0017:77ff:fef
nodeInfo.VendorID.........o...... 0x001777
nodeDescription.NodeString....... 'Obsidian Lon

45 LOC! - perform any RPC, with any arguments and pretty
print the result. Widely used in implementing ibtool.

Python RDMA

Obsidian Research Corp.

Library Tour - MAD Handling

e Two MAD QP interfaces - rdma.umad (SMP and GMP)
and rdma.vmad (only GMP)

e Simplified programming model for issuing RPC MADs,
RPC errors are converted into exceptions. checks, parsing
and RMPP are centralized.

e rdma.SATransactor transparently converts SMP RPCs into
SA RPCs - enables all tools to use VMAD and return data
from the SA.

e rdma.sched parallelizes MAD RPCs - extremely easy to
use, major performance win. Used extensively in ibtool

Python RDMA

Obsidian Research Corp.

S

D:

D:

Library Tour - MAD Handling (2)

ibtool ibaddr 10 --sa -d

RPC MAD METHOD GET (1) SAFormat (3.2)
SANodeRecord (17) completed to '"Path 8 -> 8

RPC MAD METHOD GET (1) SAFormat (3.2)
SAPortInfoRecord(18) completed to 'Path 8 -

GID fe80::2:c903:0:14a6 LID start 10 end 10

$
D:
D..

ibtool 1bnetdiscover --sa -d

Performing discovery using mode 'SA'

RPC MAD METHOD GET TABLE (18) SAFormat (3.2)
SANodeRecord (l7) completed to '"Path 8 -> 8 S

RPC MAD METHOD GET TABLE (18) SAFormat (3.2)
SAPortInfoRecord(18) completed to 'Path 8 ->

RPC MAD METHOD GET TABLE (18) SAFormat (3.2)
SALinkRecord (32) completed to 'Path 8 -> 8 S

Python RDMA

Obsidian Research Corp.

Library Tour - MAD Parallelism

Python Co-Routines - one thread, multiple execution
contexts:

def get pinf (sched,path, 1dx):
pinf = yield sched.SubnGet (IBA.SMPPortInfo,
path, 1dx) ;
sched.mqueue (get pinf (sched, path, 1dx)
for I 1n range(l,ninf.numPorts+1));

Run numPorts copies of get pinfin parallel. Automatically
l[imits outstanding RPCs, tracks completion, manages
timeouts, etc.

Python RDMA

Obsidian Research Corp.

Library Tour - IB Subnet

Fetch, store and manipulate an IB subnet:

e Discovery via DR SMP, LID SMP or SA
SubnAdmGetTable

e Incremental out of order loading

e Save/Load to a Python pickle

e [terate, BFS iterate, lookup by GUID, etc.

Python RDMA

Obsidian Research Corp.

Library Tour - IB Subnet (2)

All ibtool discovery using functions support common
options and caching:

S ibtool ibnetdiscover --cache disc \
==refresh-cache

$ ibtool ibcheckerrors --cache disc

Summary: 4 nodes checked, 0 bad nodes found

#4# 8 ports checked, 0 ports with bad st

&4 4 ports checked, 0 ports have errors

No MADs will be 1ssued by ibcheckerrors

Python RDMA

Obsidian Research Corp.

Library Tour - Verbs

Easy to use wrappers around verbs:

with get _verbs (path.end port) as ctx:
cq = ctx.cq(100,ctx.comp channel()):;
pd = ctx.pd();
qp = pd.qgp (ibv.IBV QPT UD,100,100,cq);

e Errors are raised as exceptions

e [ibibverbs functions cast into objects

e Reference counting and Python context managers ensure
correct resource cleanup

Python RDMA

Obsidian Research Corp.

Library Tour - Verbs (2)

Simplifications for WC processing:

poller = CQPoller (cq);
for wc 1n poller.iterwc (timeout=1) :
1f wc.status != 1bv.IBV WC SUCCESS:
raise 1bv.WCError (wc, cq, cbj=qgp)

e [terate over WC's, block with pol!

e Transparently handle async events

e Place a timeout around the entire for loop

e Messy details to prevent races are hidden

e WC errors raise as exceptions and pretty print

Python RDMA

Obsidian Research Corp.

Library Tour - Verbs (3)

Tight integration with /BPath concept:

path = get mad path (umad, "10");

gqp.establish (path) ;

gp.post send(ibv.send wr (
opcode=1bv.IBV WR SEND,ah=pd.ah (path),

remote gpn= path dqpn,rem@te gkey=path.qgkey));

e Caches AH construction

e Verbs modify gp draws information from the path (eg
pkey, gkey, psn, etc)

e Works for UD, UC and RC,

e Can also get a path from a WC

Python RDMA

Obsidian Research Corp.

e Great for writing management tools

e Very time efficient for test development,
training and prototyping

e jbtool is an improved, simpler and more
maintainable version of the diags
programs

Python RDMA

Obsidian Research Corp.

Get it at GitHub

%
Read the manual!
Try it out!

Python RDMA

Obsidian Research Corp.

