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What is in it?

e RDMA device discovery:

for I 1n rdma.get devices(): print I.name;

e RDMA Verbs:

with rdma.get verbs (path.end port) as ctx:
print ctx.query device();

e |[B Management:

cpl = umad.SubnAdmGet (IBA.MADClassPortInfo);

Plus more!
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What is Python?

Python is a modern, very high level, multi-
paradigm programming language:

e Emphasis on readability and clarity

* Modern high level features: exceptions, garbage collection,
dynamic 'duck’ typing, closures

e Very popular for web development, finance, and for
system administration.

e Included by default and used in major Linux distributions
for many years
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Cognitive Dissonance

Python is slow!

RDMA is for high performance!
Why!1?1?

Sometimes correct and simple is more
important than fast..

... and good algorithms can help.
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Package Contents

e RDMA Device Discovery

e Definitions from the IBA

e |[IB MAD RPC handling and parallelism
 |B subnet topology database

e [ibibverbs interface (Pyrex)

e ibtool command line program

e Codegen'd and hand written documentation
e Test suite

Pure Python except for rdma.ibverbs!

GPL licensed
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Package Contents (2)

OFA Module
libibmad

libibumad
libibverbs
libibnetdisc
librdmacm
libibem
infiniband-
diags
1butils

perftest

Python RDMA

Python-rdma

Near 100% coverage via rdma.madtransactor and
rdma.lBA

100% coverage via rdma.umad

100% coverage via rdma.ibverbs (through Pyrex)

~80% coverage. No support for switch chassis grouping.
Not covered

Not covered

45 commands re-implemented, 2 un-implemented. Review
ibtool

Good coverage of the internal APIs but no coverage for the
user tools.

rdma_bw 1s implemented as an example.

Obsidian Research Corp.



$ ibtool rdma bw 127.0.0.1
path to peer IBPath(end port='mlx4 0/1',
DGID=GID('feB80::2:c903:9:1edd"),
DLID=1, MTU=4, packet life time=0,
SGID=GID('feB80::2:c903:9:1edd"),
SLID=1, dack resp time=15L, dgpn=524361L,
dgpsn=6645404, drdatomic=0,
rate=3, sack resp time=15L, sqpn=524360L,
sqpsn=1754047, srdatomic=0)
MR peer raddr=7£d268a9c000 peer rkey=8002200
1000 1terations of 1048576 1s 1048576000 bytes
3065.7 MB/sec

MT26428 using internal loopback, 2.8GHz 15-2300
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Re-implementation of infiniband-diags using Python as the
implementation language:

e One language
e (reater consistency
e Higher performance

Also:

e Test the Python RDMA core library

e Access the unique features of the Python RDMA via the command line
e Serve as programming examples

45 commands are implemented, > 90% complete
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Mostly looks the same:

$ ibtool ibaddr 7

GID fe80::17:77ff:feb6:2ca4 LID start 7 end 7

$ ibtool ibswitches

Switch : 0017:77ff:febb:2cad4d ports 2 "Obsidian
Switch : 0017:77ff:fef9:6e79 ports 2 "Obsidian
S ibtool smpquery -P 2 NI -D Q0,2

# Node info: DR Path (0, 2)

BasSeVerS: @i i ittt ittt et e eneeens 1
L RSBV 8 v v e v s s n s s o ssonsnssssnsas 1
NodeT YR ittt ittt i eeseeesesnseses 2
NUMP O LSt s i i ittt t ettt et eeeennnnns 2
SystemGuid: ... ..ottt eeeneens 0017:77ff:fef9:
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Some are new:

$ ibtool perfquery --vl-xmit-wait 9
# Port counters: Lid 9 (fe80::17:77ff:fef9:6e79)

PortSelech .ttt it it ittt oo ennneeas 1
CounterSeleCh v ittt eeeeneneesas O0x0000
PortVLXmitWailit[0] 1. v e e i ot e eeneens 606

$ ibtool subnet diff ref

Current subnet has 4 end ports, reference subnet
All end ports 1n the current subnet are i1in the
All end ports in the reference subnet are in th
Current subnet has 3 nodes, reference subnet has
All nodes 1n the current subnet are 1n the refe

A
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Section 8 of the Python RDMA manual details the various
differences between ibtool and infiniband-diags:

e Greater alignment with the IBA, PR usage, timeout computations, support for
routed GIDs, etc

e Everything supports GID/GUID/LID/DR path as a TARGET

e Better diagnostics and debug output, including packet decodes

e —-sa and support for GMP over verbs lets ibfool return info without access to
/dev/umad

e LID and SA based subnet discovery options
e Consistent support for a discovery caching file
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Library Tour - Device Discovery

e rdma.devices module - trundles through sysfs and gets devices, end ports.

e Common basis for all other modules - umad and ibverbs are all opened based
on these objects.

e Find devices by string:

Format Example
device mix4 0
Node GUID | 0002:¢903:0000:1491

e Find ports by string:

Format Example
device mix4 0 (defaults to the first port)
device/port = mix4 /1
Port GID fe80::2:¢903:0:1491
Port GUID @ 0002:c903:0000:1491
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Library Tour - Device Discovery (2

Library features flow into ibtool:

$ ibtool ibaddr -P fe80::2:c903:0:14a6 9 -d
D: Using end port mlx4 0/2 fe80::2:c903:0:14a6
D: SMP Path 10 -> 9 SL=0 PKey=0xffff DQPN=0
IBPath (end port='mlx4 0/2', DLID=10,
SLID=10, dgpn=0, gkey=0x0,
sgqpen=0)
D: RPC MAD METHOD GET(l) SMPFormat (l.1)
SMPNodeInfo (17) completed to
'"Path 10 -> 9 SL=0 PKey=0xffff DQPN=Q'
len 2560.
D: RPC MAD METHOD GET(l) SMPFormat (l.1)
SMPPmrtInfm(Zl} cmmpleted to

| B > 1‘
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Library Tour - IBA

Structures and constants from the IBA:

e Starts out as XML describing the precise on-the-wire
structure layout

e Processed via script into Python classes with pack, unpack
and printer functions

e 106 structures from IBA

e Useful constants, value to string and string to value are
hand written

e Auto generate tricky things like
SAFormat.componentMask
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Library Tour - IBA (2)

Everything can be decoded and dumped:

S ibtool ibaddr 9 -dd
D: Reply MAD METHOD GET RESP(129) SMPFormat (1.1)

0 01010181 baseVersion=1l,mgmtClass=1,classVers

4 00000000 status=0,classSpecific=0

8 000079FF transactionID=134139628569652

12 DOE94434

+ data SMPNodelnfo
04 01010202 baseVersion=1l,classVersion=1l,nodeTy
68 001777FF systemImageGUID=GUID('0017:77ff:fef
12 FEF96E79
76 001777FF nodeGUID=GUID('0017:77ff:fef9:6e79"
80 FEF96E79
d /]
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Library Tour - IBA (3)

Dynamic language with introspection makes this dead easy:

$ ibtool query SubnAdmGetTable SANodeRecord \
-f nodeInfo.systemImageGUID=0017:77ff:fef9:0e7
Reply structure #0

LID . ¢ o e oo v e vt s esnsssesnstsensnssns 9
nodeInfo.NumPorts. ... 2
nodeInfo.SystemImageGUID......... 0017:77ff:fef
nodeInfo.PortGUID. ... v v, 0017:77ff:fef
nodeInfo.VendorID.........o...... 0x001777
nodeDescription.NodeString....... 'Obsidian Lon

45 LOC! - perform any RPC, with any arguments and pretty
print the result. Widely used in implementing ibtool.
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Library Tour - MAD Handling

e Two MAD QP interfaces - rdma.umad (SMP and GMP)
and rdma.vmad (only GMP)

e Simplified programming model for issuing RPC MADs,
RPC errors are converted into exceptions. checks, parsing
and RMPP are centralized.

e rdma.SATransactor transparently converts SMP RPCs into
SA RPCs - enables all tools to use VMAD and return data
from the SA.

e rdma.sched parallelizes MAD RPCs - extremely easy to
use, major performance win. Used extensively in ibtool
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S

D:

D:

Library Tour - MAD Handling (2)

ibtool ibaddr 10 --sa -d

RPC MAD METHOD GET (1) SAFormat (3.2)
SANodeRecord (17) completed to '"Path 8 -> 8

RPC MAD METHOD GET (1) SAFormat (3.2)
SAPortInfoRecord(18) completed to 'Path 8 -

GID fe80::2:c903:0:14a6 LID start 10 end 10

$
D:
D..

ibtool 1bnetdiscover --sa -d

Performing discovery using mode 'SA'

RPC MAD METHOD GET TABLE (18) SAFormat (3.2)
SANodeRecord (l7) completed to '"Path 8 -> 8 S

RPC MAD METHOD GET TABLE (18) SAFormat (3.2)
SAPortInfoRecord(18) completed to 'Path 8 ->

RPC MAD METHOD GET TABLE (18) SAFormat (3.2)
SALinkRecord (32) completed to 'Path 8 -> 8 S
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Library Tour - MAD Parallelism

Python Co-Routines - one thread, multiple execution
contexts:

def get pinf (sched,path, 1dx):
pinf = yield sched.SubnGet (IBA.SMPPortInfo,
path, 1dx) ;
sched.mqueue (get pinf (sched, path, 1dx)
for I 1n range(l,ninf.numPorts+1));

Run numPorts copies of get pinfin parallel. Automatically
l[imits outstanding RPCs, tracks completion, manages
timeouts, etc.
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Library Tour - IB Subnet

Fetch, store and manipulate an IB subnet:

e Discovery via DR SMP, LID SMP or SA
SubnAdmGetTable

e Incremental out of order loading

e Save/Load to a Python pickle

e [terate, BFS iterate, lookup by GUID, etc.
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Library Tour - IB Subnet (2)

All ibtool discovery using functions support common
options and caching:

S ibtool ibnetdiscover --cache disc \
==refresh-cache

$ ibtool ibcheckerrors --cache disc

## Summary: 4 nodes checked, 0 bad nodes found

#4# 8 ports checked, 0 ports with bad st

&4 4 ports checked, 0 ports have errors

No MADs will be 1ssued by ibcheckerrors
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Library Tour - Verbs

Easy to use wrappers around verbs:

with get _verbs (path.end port) as ctx:
cq = ctx.cq(100,ctx.comp channel()):;
pd = ctx.pd();
qp = pd.qgp (ibv.IBV QPT UD,100,100,cq);

e Errors are raised as exceptions

e [ibibverbs functions cast into objects

e Reference counting and Python context managers ensure
correct resource cleanup
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Library Tour - Verbs (2)

Simplifications for WC processing:

poller = CQPoller (cq);
for wc 1n poller.iterwc (timeout=1) :
1f wc.status != 1bv.IBV WC SUCCESS:
raise 1bv.WCError (wc, cq, cbj=qgp)

e [terate over WC's, block with pol!

e Transparently handle async events

e Place a timeout around the entire for loop

e Messy details to prevent races are hidden

e WC errors raise as exceptions and pretty print
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Library Tour - Verbs (3)

Tight integration with /BPath concept:

path = get mad path (umad, "10");

gqp.establish (path) ;

gp.post send(ibv.send wr (
opcode=1bv.IBV WR SEND,ah=pd.ah (path),

remote gpn= path dqpn,rem@te gkey=path.qgkey));

e Caches AH construction

e Verbs modify gp draws information from the path (eg
pkey, gkey, psn, etc)

e Works for UD, UC and RC,

e Can also get a path from a WC
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e Great for writing management tools

e Very time efficient for test development,
training and prototyping

e jbtool is an improved, simpler and more
maintainable version of the diags
programs
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Get it at GitHub

%
Read the manual!
Try it out!
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