
14th ANNUAL WORKSHOP 2018

MULTI-PROCESS SHARING
OF RDMA RESOURCES

Alex Rosenbaum

April 2018
Mellanox Technologies

WHY?

 Why Multi-Process RDMA access?

 Multi-Thread can do just as good!
REALY?

or is there anything missing?

2 OpenFabrics Alliance Workshop 2018

AGENDA

 Motivation
 Different Solutions
 Examples and use cases
 Problems and limitations

3 OpenFabrics Alliance Workshop 2018

App 1
App 2

ibv_post_send()
SQ
buf

HCA

DBApp 1
App 2

MRQP

HCA

PD

QP

CTX CTX

MOTIVATION

 Existing fork() based applications and frameworks
• Replace socket() and need to be on par
• NGINX, Big Data, Hadoop

 TELCO Grade Resiliency
• Allow design in a high availability based requirement

 Application update without breaking connections

 Treat Processes as you would Thread

 Extended debuggability
• Attach to existing process and read values

4 OpenFabrics Alliance Workshop 2018

ALTERNATIVE SOLUTIONS

 Shared IB Object
 fork()
 Shared Memory

5 OpenFabrics Alliance Workshop 2018

SHARED IB OBJECT SOLUTION

OpenFabrics Alliance Workshop 20186

SHARED IB OBJECT SOLUTION

 High Level:
• Each process holds a reference to the same Kernel/HW object value
• Sharing the same ib_obj through different ib_uobj and different ib_ucontext

 Design:
• Open RDMA resource from user space
• Create a Share FD or use the existing ibv_context fd
• Associate IB object with Shared FD
• Pass Shared FD to other process
• Other process to open shared resource based on shared FD
• Kernel to track resource open from all processes

 Application has to:
• Pass the Shared FD between processes
• Pass the shared objects’ handles between processes to be opened

7 OpenFabrics Alliance Workshop 2018

SHARED IB OBJECT EXAMPLE

 Example:
• Primary processes allocates and registers huge memory blocks
• Each secondary processes open the MR’s as with Shared FD into their own PD
• Each secondary processes does RDMA operation on segments of memory which is

shared and mapped once
• Single LKey will result in higher performance

8 OpenFabrics Alliance Workshop 2018

App 1
App 2

MRQP

HCA

PD

QP

CTX CTX

SHARED IB OBJECT LIMITATION

 Good for stateless objects: PD, MR, XRC
• But how do we transfer state full objects: QC, CQ, cmd_id’s

9 OpenFabrics Alliance Workshop 2018

FORK SOLUTION

OpenFabrics Alliance Workshop 201810

FORK() BASED SOLUTION

 High Level:
• All IB/RDMA resources are created as

shared fd/memory/locks
• On fork(), all shared objects are exposed

also to child
• Kernel holds single ib_ucontext and

ib_uobj instances for both processes
• User space, parent & child, share only

resources created in it’s history
• User needs to sync processes just as it

has to sync threads:
• Pass and sync ibv/cma handles to

resources each processes should
handle.

• Protect critical sections from multi-
thread access, or from destroy races.

11 OpenFabrics Alliance Workshop 2018

Parent
Proc

Create
MR + QP + CQ

Fork()

Use
MR + QP + CQ

Child
Proc

Create
QP2 + CQ2

FORK() BASED SOLUTION

 Created ‘SHARED’ ibv_context
 All created IBV objects are allocated as shared
 Upon fork all are shared

12 OpenFabrics Alliance Workshop 2018

struct ibv_context *ibv_open_device_ex(
struct ibv_device *device,
struct ibv_context_attr *attr);

struct ibv_context_attr {
uint32_t flags;

};

enum ibv_context_flags {
IBV_CONTEXT_FLAGS_SHARED = 1 << 0

};

App 1

App 2

ibv_post_send()
SQ
buf

HCA

DB

FORK() EXAMPLE

 RDMA server with fork()-ed children processes handling the
traffic request/responce

13 OpenFabrics Alliance Workshop 2018

server_main() {

server_create_device_shared(); /* with IBV_CONTEXT_FLAGS_SHARED */

rdma_listen(listen_id, 0);

while (!exit) {
/* wait for RDMA_CM new connection requests */
rdma_get_request(listen_id, &id);

/* create QP + CQ */
server_create_resources(id);

/* accept connection */
rdma_accept(id, NULL);

if (fork())
continue; /* server process */

else
server_connection_processing(); /* child process */

}
}

FORK() SOLUTION LIMITATION

 Single Binary
• Upgrade/Replace of binary is impossible
• Need to replace entire processes and release all RDMA resources

 Adding object which is not shared to an already shared object
• New ‘private’ QP with shared CQ: old child will not recognize new qp_num

 Atomicity of parent/child crash doesn’t guaranty RDMA resource
usability

14

SHARED MEMORY SOLUTION

OpenFabrics Alliance Workshop 201815

APPLICATION SHARED MEMORY SOLUTION

 High Level Design:
• Application to manage the shared memory

• rdma-core allocates resource with application callback: shared_malloc()
• Application to allow additional processes to attach to same virtual address offset in

the shared memory
• All processes modify the same shared memory DB and access the same HW

mapped resource

 Allows Application logic / binary to be updated
• Compared to fork() in which we have single binary
• Must keep rdma-core identical

16 OpenFabrics Alliance Workshop 2018

APPLICATION SHARED MEMORY EXAMPLE

 RDMA Server: On RDMA_CM new connection requests
• Create RC QP + CQ
• Accept + Handle connection in thread

 Launch upgrade process which attached to shared memory and
takes ownership over connection and resource until ‘old’
processes can exit

17 OpenFabrics Alliance Workshop 2018

APPLICATION SHARED MEMORY SOLUTION

 Each new ibv_context will request application to allocate
Shared Memory
 Application manages attach to shared block
 Application uses IPC to pass ibv_obj pointers between threads

in different processes

18 OpenFabrics Alliance Workshop 2018

struct ibv_context *ibv_open_device_ex(
struct ibv_device *device,
struct ibv_context_attr *attr);

struct ibv_context_attr {
uint32_t flags;
struct ibv_context_memallocators *memallocators;

};

struct ibv_context_memallocators {
void *(*alloc)(size_t size, void *priv_data);
void (*free)(void *ptr, void *priv_data);
void *priv_data;

};

APPLICATION SHARED MEMORY LIMITATION

 Align virtual Address:
• Requires Disabling Address-Space Layout Randomization (ASLR) (vs fork())

 Guarantying rdma-core binary compatibility
• Change in data struct will break

 Atomicity of processes actions during process crash doesn’t
guaranty RDMA resource usability

19 OpenFabrics Alliance Workshop 2018

ATOMICITY PROBLEM

 How do we protect for atomicity of multi-process
failures/crashes?
• Process crashes with new WC
• Failure in post_send

 Can ‘other’ process recover the application state and continue
managing the connection?

20 OpenFabrics Alliance Workshop 2018

14th ANNUAL WORKSHOP 2018

THANK YOU
Alex Rosenbaum

Mellanox Technologies

	Multi-process sharing �of RDMA resources
	Why?
	Agenda
	Motivation
	Alternative solutions
	Shared IB Object Solution
	Shared IB Object Solution
	Shared IB Object Example
	Shared IB Object Limitation
	fork Solution
	Fork() based Solution
	Fork() based Solution
	Fork() Example
	Fork() Solution Limitation
	Shared Memory Solution
	Application Shared Memory Solution
	Application Shared Memory Example
	Application Shared Memory Solution
	Application Shared Memory Limitation
	Atomicity Problem
	THANK YOU

