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WHY?

 Why Multi-Process RDMA access?

 Multi-Thread can do just as good!
REALY?

or is there anything missing?
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AGENDA

 Motivation
 Different Solutions
 Examples and use cases
 Problems and limitations
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MOTIVATION

 Existing fork() based applications and frameworks
• Replace socket() and need to be on par
• NGINX, Big Data, Hadoop

 TELCO Grade Resiliency 
• Allow design in a high availability based requirement

 Application update without breaking connections

 Treat Processes as you would Thread

 Extended debuggability
• Attach to existing process and read values
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ALTERNATIVE SOLUTIONS

 Shared IB Object
 fork()
 Shared Memory

5 OpenFabrics Alliance Workshop 2018



SHARED IB OBJECT SOLUTION
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SHARED IB OBJECT SOLUTION

 High Level:
• Each process holds a reference to the same Kernel/HW object value
• Sharing the same ib_obj through different ib_uobj and different ib_ucontext

 Design:
• Open RDMA resource from user space
• Create a Share FD or use the existing ibv_context fd
• Associate IB object with Shared FD
• Pass Shared FD to other process
• Other process to open shared resource based on shared FD
• Kernel to track resource open from all processes

 Application has to:
• Pass the Shared FD between processes
• Pass the shared objects’ handles between processes to be opened
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SHARED IB OBJECT EXAMPLE

 Example:
• Primary processes allocates and registers huge memory blocks
• Each secondary processes open the MR’s as with Shared FD into their own PD
• Each secondary processes does RDMA operation on segments of memory which is 

shared and mapped once
• Single LKey will result in higher performance
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SHARED IB OBJECT LIMITATION

 Good for stateless objects: PD, MR, XRC
• But how do we transfer state full objects: QC, CQ, cmd_id’s
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FORK SOLUTION
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FORK() BASED SOLUTION

 High Level:
• All IB/RDMA resources are created as 

shared fd/memory/locks
• On fork(), all shared objects are exposed 

also to child
• Kernel holds single ib_ucontext and 

ib_uobj instances for both processes
• User space, parent & child, share only 

resources created in it’s history
• User needs to sync processes just as it 

has to sync threads:
• Pass and sync ibv/cma handles to 

resources each processes should 
handle. 

• Protect critical sections from multi-
thread access, or from destroy races. 
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FORK() BASED SOLUTION

 Created ‘SHARED’ ibv_context
 All created IBV objects are allocated as shared
 Upon fork all are shared
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struct ibv_context *ibv_open_device_ex(
struct ibv_device *device,
struct ibv_context_attr *attr);

struct ibv_context_attr {
uint32_t flags;

};

enum ibv_context_flags {
IBV_CONTEXT_FLAGS_SHARED = 1 << 0

};
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FORK() EXAMPLE

 RDMA server with fork()-ed children processes handling the 
traffic request/responce
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server_main() {

server_create_device_shared(); /* with IBV_CONTEXT_FLAGS_SHARED */

rdma_listen(listen_id, 0);

while (!exit) {
/* wait for RDMA_CM new connection requests */
rdma_get_request(listen_id, &id);

/* create QP + CQ */
server_create_resources(id);

/* accept connection */
rdma_accept(id, NULL);

if (fork())
continue; /* server process */

else
server_connection_processing(); /*  child process */

}
}



FORK() SOLUTION LIMITATION

 Single Binary
• Upgrade/Replace of binary is impossible
• Need to replace entire processes and release all RDMA resources

 Adding object which is not shared to an already shared object
• New ‘private’ QP with shared CQ: old child will not recognize new qp_num

 Atomicity of parent/child crash doesn’t guaranty RDMA resource 
usability
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SHARED MEMORY SOLUTION
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APPLICATION SHARED MEMORY SOLUTION

 High Level Design:
• Application to manage the shared memory

• rdma-core allocates resource with application callback: shared_malloc()
• Application to allow additional processes to attach to same virtual address offset in 

the shared memory
• All processes modify the same shared memory DB and access the same HW 

mapped resource

 Allows Application logic / binary to be updated
• Compared to fork() in which we have single binary
• Must keep rdma-core identical
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APPLICATION SHARED MEMORY EXAMPLE

 RDMA Server: On RDMA_CM new connection requests
• Create RC QP + CQ
• Accept + Handle connection in thread

 Launch upgrade process which attached to shared memory and 
takes ownership over connection and resource until ‘old’ 
processes can exit
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APPLICATION SHARED MEMORY SOLUTION

 Each new ibv_context will request application to allocate 
Shared Memory
 Application manages attach to shared block
 Application uses IPC to pass ibv_obj pointers between threads 

in different processes
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struct ibv_context *ibv_open_device_ex(
struct ibv_device *device,
struct ibv_context_attr *attr);

struct ibv_context_attr {
uint32_t flags;
struct ibv_context_memallocators *memallocators;

};

struct ibv_context_memallocators {
void *(*alloc)(size_t size, void *priv_data);
void (*free)(void *ptr, void *priv_data);
void *priv_data;

};



APPLICATION SHARED MEMORY LIMITATION

 Align virtual Address:
• Requires Disabling Address-Space Layout Randomization (ASLR) (vs fork())

 Guarantying rdma-core binary compatibility
• Change in data struct will break

 Atomicity of processes actions during process crash doesn’t 
guaranty RDMA resource usability
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ATOMICITY PROBLEM

 How do we protect for atomicity of multi-process 
failures/crashes?
• Process crashes with new WC
• Failure in post_send

 Can ‘other’ process recover the application state and continue 
managing the connection?
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