
14th ANNUAL WORKSHOP 2018

PERSISTENT MEMORY PROGRAMMING
THE REMOTE ACCESS PERSPECTIVE

Tom Talpey, Architect

April 10, 2018
Microsoft

OUTLINE

 SNIA NVMP Programming Model
• PMEM Remote Access considerations

 New RDMA Semantics
• Extensions in support of PMEM at minimum latency

 Windows PMEM Support
• Support for PMEM, and future possibilities

2

SNIA NVMP PROGRAMMING MODEL

3

PERSISTENT MEMORY VOLUME AND FILE

4

Includes Block, File, Volume and Persistent Memory (PM) File

Application

PM device PM device. . .

User space

Kernel space

MMU
Mappings

PM-aware
file system

NVM PM capable driver

Load/
store

Native file
API

PM-aware
kernel module

PM device

NVM.PM.VOLUME
mode

NVM.PM.FILE mode

Use with memory-like NVM

NVM.PM.VOLUME Mode
• Software abstraction to OS components for

Persistent Memory (PM) hardware
• List of physical address ranges for each PM

volume
• Thin provisioning management

NVM.PM.FILE Mode
• Describes the behavior for applications

accessing persistent memory Discovery and
use of atomic write features

• Mapping PM files (or subsets of files) to
virtual memory addresses

• Syncing portions of PM files to the
persistence domain

Memory Mapping in NVM.PM.FILE mode
enables direct access to persistent

memory using CPU instructions

MORE ON MAP AND SYNC

 Map
• Associates memory addresses with open file
• Caller may request specific address
 Sync

• Flush CPU cache for indicated range
• Additional Sync types
• Optimized Flush – multiple ranges from user space
• Async Flush / Drain – Optimized flush with later completion wait
 Warning! Sync does not guarantee order

• Parts of CPU cache may be flushed out of order
• This may occur before the sync action is taken by the application
• Sync only guarantees that all data in the indicated range has been flushed

some time before the sync completes

Sync does not guarantee order

5

REMOTE ACCESS FOR HA SOFTWARE MODEL

6

RDMA for HA During msync or opt_flush

Application

Opt_flushNative file
API

libc libpmem

Load/store
NVM.PM.FILE mode

User space

Kernel space

MMU MappingsPM-aware file system

PM device

Network file system
client

opt_flushmsync

RNIC

RDMA Operation Requests

Peer A Peer B

RDMA Data

RDMA Operation Requests

Load/StoreOpt FlushNative File
API

ASYNCHRONOUS FLUSH

 In process of definition in SNIA NVMP TWG
 AsyncFlush() is OptimizedFlush() which does not wait for drain

• Local X86 analogue: clflush/clflushopt

 Subsequent Drain() call required
• Local X86 analogue: sfence

 Anticipated use by overlapped (parallel) programming
 Especially: Remote programming

7

ASYNCHRONOUS FLUSH SEMANTICS

 Async Flush defines ordering of durability, and nothing more
 Consistency (visibility) vs Persistency (durability)
 Relaxed order “memory API”

• Load/Store to visibility
• Relaxed order to memory

• Flush/Drain to durability
• Ordered only to prior stores

8

Cache hierarchy
Store buffer

Load Store Async
Flush Drain

Volatile
memory

Persistent
memory

Load/Store Load/Store
Relaxed
ordering

LOCAL IMPLEMENTATION

 Load => load
 Store => store
 Async flush => pmem_flush

• x86-64: clflush to region(s) which are target of flush

 Drain => pmem_drain
• x86-64: sfence to wait for store pipeline(s) to complete

9

REMOTE IMPLEMENTATION

 Load => load
 Store => store
 Async flush => RDMA Write

• RDMA Write from region(s) which are target of flush
• Note: page-fault model (at time of load/store) far too expensive and imprecise

• Efficiently leverages relaxed ordering semantic to defer RDMA Write
• NVMP Interface facilitates this by providing region list
• Async method allows application to invoke as overlapped “giddy-up”

 Drain => RDMA Flush
• RNIC RDMA Flush to all queuepairs written-to by the RDMA Write(s)
• Note: region or segment scope under discussion in future
• See following subsection for RDMA Flush definition

10

NEW RDMA SEMANTICS

11

RDMA PROTOCOLS

 Need a remote guarantee of Durability
• In support of OptimizedFlush()/ AsyncFlush()

 RDMA Write alone is not sufficient for this semantic
• Guarantees remote visibility, but not final memory residency (durability)

• Similar to CPU cache => memory semantic
• Does not guarantee ordered delivery w.r.t. other operations (“post” only)

 An extension is desired
• Proposed “RDMA Commit”, a.k.a. “RDMA Flush”

 Executes as non-posted operation
• Ordered, Flow controlled, acknowledged (like RDMA Read or Atomic)
• Initiator requests specific byte ranges to be made durable
• Responder acknowledges only when durability complete
• Strong consensus on these basics

12

RDMA FLUSH (CONCEPT)

 New wire operation, and new verb
 Implementable in iWARP and IB/RoCE
 Initiating RNIC provides region, other commit parameters

• Under control of local API at client/initiator

 Receiving RNIC queues operation to proceed in-order
• Like non-posted RDMA Read or Atomic processing
• Subject to flow control and ordering

 RNIC pushes pending writes to targeted region(s)
• Alternatively, NIC may simply opt to push all writes

 RNIC performs any necessary PM commit
• Possibly interrupting CPU in current architectures
• Future (highly desirable to avoid latency) perform via PCIe

 RNIC responds when durability is assured

13

STANDARDS DISCUSSION

 Broad IBTA agreement on RDMA Flush approach
 Discussion continues on semantic details

• Per-segment, per-region or per-connection?
• Implications on the API (SNIA NVMP TWG)

• Important to converge
 Ongoing discussion on “non-posted write”

• Provides write-after-flush semantic
• Useful for efficient log write, transactions, etc

• While avoiding pipeline bubbles

 PCI support for Flush from RDMA adapter
• To Memory, CPU, PCI Root, PM device, PCIe device, …
• Avoids CPU interaction
• Supports strong data persistency model
 Possibly achievable without full-blown PCIe extensions

• “Hints”, magic platform register(s), etc
• Accelerate adoption with platform-specific support

14

REMOTE ACCESS FOR HA LADDER DIAGRAM

15

Remote Optimized Flush

App: SW PeerA:
Host SW

PeerANIC:
RNic

PeerBNIC:
RNic

PeerBPM:
PM

PeerB:
Host SW

Optimized
Flush RDMAWrite

RDMAWrite

Write

RDMAWrite

Write

RDMAWrite

Flush

Flush

Flush

1

2

3

RDMAWrite

Flush
RDMAWrite

Write

(or)
Async
Flush

+
Drain

EXAMPLE: LOG WRITER (FILESYSTEM)

 For (ever)
{ Write log record, Commit }, { Write log pointer (, Commit) }

• Latency is critical
• Log pointer cannot be placed until log record is successfully made durable

• Log pointer is the validity indicator for the log record
• Transaction model

• Log records are eventually retired, buffer is circular
 Protocol implications:

• Must wait for first commit (and possibly the second)
• Wait introduces a pipeline bubble – very bad for throughput and overall latency
• Desire an ordering between Commit and second Write to avoid this
 Proposed solution: “Non-posted write”

• Special Write which executes “like a Read”
• Ordered with other non-posted operations (esp. Flush)
• Specific size and alignment restrictions

• Being discussed in IBTA
 Not yet expressed in SNIA NVMP interface

16

WRITES, FLUSH AND WRITE-AFTER-FLUSH
“Non-posted Write”

17

Flush

Hos
t

SW

Host
PMEMNIC NIC

Merge?

RDMA “VERIFY”

 After a RDMA Write + RDMA Flush, how does the initiator know
the data is intact?
• Or in case of failure, which data is not intact?
• Reading data, signaling remote CPU inefficient and impractical

 Add integrity hashes to a new operation
• Or, possibly, piggybacked on Flush (which would mean only one protocol change)
• Note, not unlike SCSI T10 DIF

 Hashing implemented in RNIC or Library “implementation”
• Algorithm(s) to be negotiated by upper layers
• Which could be in

• Platform, e.g. storage device itself
• RNIC hardware/firmware, e.g. RNIC performs readback/integrity computation
• Other hardware on target platform, e.g. chipset, memory controller
• Software, e.g. target CPU

 Roughly mapped to SNIA NVMP TWG OptimizedFlushAndVerify()

18

WRITE, FLUSH AND VERIFY

19

Flush

Host
SW

Host
PMEMNIC NIC

Merge?

Verify

PRIVACY

 Upper layers protect their send/receive messages today
 But RDMA direct transfers are not protected

• No RDMA encryption standard
 Desire to protect User Data with User Key

• Not global, machine or connection key!
• Rules out IPsec, TLS, DTLS
 Why not just use the on-disk crypto?

• Typically a block cipher, requiring block not byte access
• No integrity – requires double computation
 Authenticated stream cipher (e.g. AES-CCM/GCM as used by SMB3)

• Provides wire privacy *and* integrity, efficiently
• (not at-rest – still need RDMA Verify)

• Arbitrary number of bytes per transfer
• Shares cipher and keying with upper layer
• But, how to plumb key into RDMA NIC message processing?
 Enhance RDMA Memory Regions

• Which does not require RDMA protocol change!

20

RDMA WRITE ENCRYPTION

 Extend MR verb
and NIC TPT to
include key
• Handle = Register(PD,

buffer, mode, key)

 Keys held by upper
layer, user policy,
and passed down
to NIC
 NIC uses key when

reading or writing
each region

Host
SW

Host
PMEMNIC NIC

Host
SW

+nonce
+nonce

* Klingon 

21

CIPHER HOUSEKEEPING

 Authenticated ciphers typically employ nonces (e.g. AES-GCM)
• Same {key,nonce} pair used at each end to encrypt/decrypt each message
• Never reuse nonce for different payload!

• Upper layer must coordinate nonce usage with RDMA layer
• RDMA layer must consider when retrying

• NIC may derive nonce sequence from RDMA connection
• E.g. from RDMA msn. Not from the MR!

• Alternatively, prepend/append to data buffer
• Upper layer consumes nonce space, too

 Re-keying necessary when nonce space exhausted!
• Nonces are large (SMB3 employs 11 bytes for GCM), but require careful

management and sharing with ULP
• Key management is upper layer responsibility, as it should be

22

RDMA QOS

 Upper layers have no trouble saturating even 100Gb networks
with RDMA today
 Memory can sink writes at least this fast
Networks will rapidly congest

• Rate control, fairness and QoS are required in the RDMA NIC

 Simplistically, bandwidth limiting
 More sophisticated approach desirable

• Classification/end-to-end QoS techniques
• SDC2014 presentation (“resources” slide)

• Software-Defined Network techniques
• Generic Flow Table-based policy

 Existing support in many Enterprise-class NICs

23

WINDOWS PMEM SUPPORT

24

WINDOWS PERSISTENT MEMORY

 Persistent Memory is supported in Windows
• PMEM support is foundational in Windows going forward

 Support for JEDEC-defined NVDIMM-N devices available from
• Windows Server 2016
• Windows 10 (Anniversary Update – Fall 2016)

 PMDK is fully supported by Windows
• Code and binaries available on Github (Resources slide)

25

WINDOWS PMEM ACCESS

DAX mode (at right)
 Direct Access app obtains direct access to

PMEM via existing memory-mapping semantics
 Updates directly modify PMEM, Storage Stack

not involved (Green data path)
 True device performance (no software

overhead)
 Byte-Addressable
 “NVM.PM.FILE”
 Available since Windows 10 Anniversary

Update / Server 2016

Block mode (at left)
 App continues to use traditional kernel-

mediated APIs (File and Block)
 Full compatibility with existing apps
 Improved performance via underlying hardware
 “NVM.PM.VOLUME”
 Available since Windows 10 Anniversary

Update / Server 2016

PMEM-Aware (later slide)
 “PMEM-aware” open coded
 Native “Rtl” API (Windows 10 Spring 2017 and

future Server)
 PMDK open source

26

Disk DriverBus Driver

Block Mode
Application

Standard File API

PMEM

DirectAccess
Application

Load/Store

Operations

PM-Aware File System (NTFS - DAX)

Application
requests memory-

mapped file

Enumerates
NVDIMM

User Mode

Kernel Mode

Memory
Mapped
Region

Memory
Mapped
Region

Load/Store

Operations

DirectAccess

Data Path

DirectAccess

Setup Path

Standard Block API

WINDOWS NATIVE PMEM APIS

 Available from both user and kernel modes
 Flush to durability in optimal fashion for each hardware architecture
 Supported in Windows 10 1703 (Spring 2017) and Windows Server (future)

 RtlGetNonVolatileToken
https://msdn.microsoft.com/en-us/library/windows/hardware/mt800701.aspx

 RtlWriteNonVolatileMemory
https://msdn.microsoft.com/en-us/library/windows/hardware/mt800702.aspx

 RtlFlushNonVolatileMemory/RtlFlushNonVolatileMemoryRanges
https://msdn.microsoft.com/en-us/library/windows/hardware/mt800698.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/mt800699.aspx

 RtlDrainNonVolatileFlush
https://msdn.microsoft.com/en-us/library/windows/hardware/mt800697.aspx

 RtlFreeNonVolatileToken
https://msdn.microsoft.com/en-us/library/windows/hardware/mt800700.aspx

27

https://msdn.microsoft.com/en-us/library/windows/hardware/mt800701.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/mt800702.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/mt800698.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/mt800699.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/mt800697.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/mt800700.aspx

USING DAX IN WINDOWS

DAX Volume Creation

DAX Volume Identification

28

IMPLICIT FLUSH CODE EXAMPLE

Memory Mapping:

29

EXPLICIT FLUSH CODE EXAMPLE

PVOID token = RtlGetNonVolatileToken(baseAddress, size, &token);

for (;;)

{

*(int *)baseAddress = random(); // Write to PMEM

RtlFlushNonVolatileMemory(token, baseAddress, sizeof(int), 0); // flags=0

baseAddress += sizeof(int);

}

RtlFreeNonVolatileToken(token);

CloseHandle(hMapping);

30

ASYNCHRONOUS FLUSH CODE EXAMPLE

PVOID token = RtlGetNonVolatileToken(baseAddress, size, &token);

for (;;)

{

*baseAddress = random(); // Write to PMEM

RtlFlushNonVolatileMemory(token, baseAddress, sizeof(int),

FLUSH_NV_MEMORY_IN_FLAG_NO_DRAIN);

baseAddress += sizeof(int);

// do more stuff

RtlDrainNonVolatileFlush(token); // Wait for prior Flush

}

RtlFreeNonVolatileToken(token);

CloseHandle(hMapping);

31

1

2

3

1 Traditional i/o
2 DAX memcpy by
SMB3 Server
3 Push Mode direct
from RDMA NIC

EXAMPLE: GOING REMOTE – SMB3

 SMB3 RDMA and “Push
Mode”

 SMB3 Server may
implement DAX-mode
direct mapping (2)
• Reduced server overhead

 RDMA NIC may implement
Flush extension (3)
• Enables zero-copy remote

read/write/flush to DAX file
• Ultra-low latency and overhead

 2, 3 can be enabled before
RDMA extensions become
available, with slight extra
cost

32

SMB3 Server

RDMA NIC

SMB3

RDMA
Push/

Commit

“Buffer Cache”

RDMA R/W

Load/Store

DAX Filesystem

PMEM

I/O
requests

Direct file
mapping

RESOURCES

 SNIA NVM Programming TWG:
• http://www.snia.org/forums/sssi/nvmp
• NVMP 1.2

https://www.snia.org/sites/default/files/SDC/2017/presentations/Solid_State_Stor_NVM_PM_NVDIMM/
Talpey_Tom_Microsoft%20_SNIA_NVM_Programming_Model_V%201.2_and_Beyond.pdf

 SNIA Storage Developers:
• Remote Persistent Memory – With Nothing But Net

https://www.snia.org/sites/default/files/SDC/2017/presentations/Solid_State_Stor_NVM_PM_NVDIMM/
Talpey_Tom_RemotePersistentMemory.pdf

• Low Latency Remote Storage – A Full-stack View
https://www.snia.org/sites/default/files/SDC/2016/presentations/persistent_memory/Tom_Talpey_Low_L
atency_Remote_Storage_A_Full-stack_View.pdf

• Storage Quality of Service for Enterprise Workloads
https://www.snia.org/sites/default/files/TomTalpey_Storage_Quality_Service.pdf

 Windows PMEM Programming:
• https://msdn.microsoft.com/en-us/library/windows/hardware/ff553354.aspx
• https://github.com/pmem/pmdk
• https://github.com/pmem/pmdk/releases

 Open Fabrics Workshop:
• Remote Persistent Memory Access - Workload Scenarios and RDMA Semantics

https://www.openfabrics.org/images/eventpresos/2017presentations/405_RemotePM_TTalpey.pdf

33

http://www.snia.org/forums/sssi/nvmp
https://www.snia.org/sites/default/files/SDC/2017/presentations/Solid_State_Stor_NVM_PM_NVDIMM/Talpey_Tom_Microsoft%20_SNIA_NVM_Programming_Model_V%201.2_and_Beyond.pdf
https://www.snia.org/sites/default/files/SDC/2017/presentations/Solid_State_Stor_NVM_PM_NVDIMM/Talpey_Tom_RemotePersistentMemory.pdf
https://www.snia.org/sites/default/files/SDC/2016/presentations/persistent_memory/Tom_Talpey_Low_Latency_Remote_Storage_A_Full-stack_View.pdf
https://www.snia.org/sites/default/files/TomTalpey_Storage_Quality_Service.pdf
https://msdn.microsoft.com/en-us/library/windows/hardware/ff553354.aspx
https://github.com/pmem/pmdk
https://github.com/pmem/pmdk/releases
https://www.openfabrics.org/images/eventpresos/2017presentations/405_RemotePM_TTalpey.pdf

14th ANNUAL WORKSHOP 2018

THANK YOU

	Persistent Memory Programming�the Remote Access Perspective
	Outline
	SNIA NVMP Programming model
	Persistent memory volume and file
	More on Map and sync
	Remote Access for ha software model
	Asynchronous Flush
	Asynchronous Flush Semantics
	Local implementation
	Remote implementation
	New RDMA Semantics
	RDMA Protocols	
	RDMA Flush (concept)
	Standards Discussion
	Remote access for ha ladder diagram
	Example: Log Writer (Filesystem)
	Writes, Flush and Write-after-Flush
	RDMA “VERIFY”
	Write, Flush and Verify
	Privacy
	RDMA Write encryption
	Cipher Housekeeping
	RDMA QoS
	Windows PMEM Support
	Windows Persistent Memory
	Windows PMEM Access
	Windows Native PMEM APIs
	Using DAX in Windows
	Implicit Flush Code Example
	Explicit Flush Code Example
	Asynchronous Flush Code Example
	Example: Going Remote – SMB3
	Resources
	THANK YOU

