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OUTLINE

 SNIA NVMP Programming Model
• PMEM Remote Access considerations

 New RDMA Semantics
• Extensions in support of PMEM at minimum latency

 Windows PMEM Support
• Support for PMEM, and future possibilities
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SNIA NVMP PROGRAMMING MODEL

3



PERSISTENT MEMORY VOLUME AND FILE
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Includes Block, File, Volume and Persistent Memory (PM) File

Application

PM device PM device. . .

User space

Kernel space

MMU 
Mappings

PM-aware 
file system

NVM PM capable driver

Load/
store

Native file 
API

PM-aware 
kernel module

PM device

NVM.PM.VOLUME 
mode

NVM.PM.FILE mode

Use with memory-like NVM

NVM.PM.VOLUME Mode
• Software abstraction to OS components for 

Persistent Memory (PM) hardware
• List of physical address ranges for each PM 

volume
• Thin provisioning management

NVM.PM.FILE Mode
• Describes the behavior for applications 

accessing persistent memory Discovery and 
use of atomic write features

• Mapping PM files (or subsets of files) to 
virtual memory addresses

• Syncing portions of PM files to the 
persistence domain

Memory Mapping in NVM.PM.FILE mode 
enables direct access to persistent 

memory using CPU instructions



MORE ON MAP AND SYNC

 Map
• Associates memory addresses with open file
• Caller may request specific address
 Sync

• Flush CPU cache for indicated range
• Additional Sync types
• Optimized Flush – multiple ranges from user space
• Async Flush / Drain – Optimized flush with later completion wait
 Warning!  Sync does not guarantee order

• Parts of CPU cache may be flushed out of order
• This may occur before the sync action is taken by the application
• Sync only guarantees that all data in the indicated range has been flushed 

some time before the sync completes

Sync does not guarantee order
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REMOTE ACCESS FOR HA SOFTWARE MODEL
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RDMA for HA During msync or opt_flush
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ASYNCHRONOUS FLUSH

 In process of definition in SNIA NVMP TWG
 AsyncFlush() is OptimizedFlush() which does not wait for drain

• Local X86 analogue: clflush/clflushopt

 Subsequent Drain() call required
• Local X86 analogue: sfence

 Anticipated use by overlapped (parallel) programming
 Especially: Remote programming

7



ASYNCHRONOUS FLUSH SEMANTICS

 Async Flush defines ordering of durability, and nothing more
 Consistency (visibility) vs Persistency (durability)
 Relaxed order “memory API”

• Load/Store to visibility
• Relaxed order to memory

• Flush/Drain to durability
• Ordered only to prior stores
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LOCAL IMPLEMENTATION

 Load => load
 Store => store
 Async flush => pmem_flush

• x86-64: clflush to region(s) which are target of flush

 Drain => pmem_drain
• x86-64: sfence to wait for store pipeline(s) to complete
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REMOTE IMPLEMENTATION

 Load => load
 Store => store
 Async flush => RDMA Write

• RDMA Write from region(s) which are target of flush
• Note: page-fault model (at time of load/store) far too expensive and imprecise

• Efficiently leverages relaxed ordering semantic to defer RDMA Write
• NVMP Interface facilitates this by providing region list
• Async method allows application to invoke as overlapped “giddy-up”

 Drain => RDMA Flush
• RNIC RDMA Flush to all queuepairs written-to by the RDMA Write(s)
• Note: region or segment scope under discussion in future
• See following subsection for RDMA Flush definition
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NEW RDMA SEMANTICS
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RDMA PROTOCOLS

 Need a remote guarantee of Durability
• In support of OptimizedFlush()/ AsyncFlush()

 RDMA Write alone is not sufficient for this semantic
• Guarantees remote visibility, but not final memory residency (durability)

• Similar to CPU cache => memory semantic
• Does not guarantee ordered delivery w.r.t. other operations (“post” only)

 An extension is desired
• Proposed “RDMA Commit”, a.k.a. “RDMA Flush”

 Executes as non-posted operation
• Ordered, Flow controlled, acknowledged (like RDMA Read or Atomic)
• Initiator requests specific byte ranges to be made durable
• Responder acknowledges only when durability complete
• Strong consensus on these basics
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RDMA FLUSH (CONCEPT)

 New wire operation, and new verb
 Implementable in iWARP and IB/RoCE
 Initiating RNIC provides region, other commit parameters

• Under control of local API at client/initiator

 Receiving RNIC queues operation to proceed in-order
• Like non-posted RDMA Read or Atomic processing
• Subject to flow control and ordering

 RNIC pushes pending writes to targeted region(s)
• Alternatively, NIC may simply opt to push all writes

 RNIC performs any necessary PM commit
• Possibly interrupting CPU in current architectures
• Future (highly desirable to avoid latency) perform via PCIe

 RNIC responds when durability is assured
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STANDARDS DISCUSSION

 Broad IBTA agreement on RDMA Flush approach
 Discussion continues on semantic details

• Per-segment, per-region or per-connection?
• Implications on the API (SNIA NVMP TWG)

• Important to converge
 Ongoing discussion on “non-posted write”

• Provides write-after-flush semantic
• Useful for efficient log write, transactions, etc

• While avoiding pipeline bubbles

 PCI support for Flush from RDMA adapter
• To Memory, CPU, PCI Root, PM device, PCIe device, …
• Avoids CPU interaction
• Supports strong data persistency model
 Possibly achievable without full-blown PCIe extensions

• “Hints”, magic platform register(s), etc
• Accelerate adoption with platform-specific support
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REMOTE ACCESS FOR HA LADDER DIAGRAM
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EXAMPLE: LOG WRITER (FILESYSTEM)

 For (ever)
{ Write log record, Commit }, { Write log pointer (, Commit) }

• Latency is critical
• Log pointer cannot be placed until log record is successfully made durable

• Log pointer is the validity indicator for the log record
• Transaction model

• Log records are eventually retired, buffer is circular
 Protocol implications:

• Must wait for first commit (and possibly the second)
• Wait introduces a pipeline bubble – very bad for throughput and overall latency
• Desire an ordering between Commit and second Write to avoid this
 Proposed  solution: “Non-posted write”

• Special Write which executes “like a Read”
• Ordered with other non-posted operations (esp. Flush)
• Specific size and alignment restrictions

• Being discussed in IBTA
 Not yet expressed in SNIA NVMP interface

16



WRITES, FLUSH AND WRITE-AFTER-FLUSH
“Non-posted Write”
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RDMA “VERIFY”

 After a RDMA Write + RDMA Flush, how does the initiator know 
the data is intact?
• Or in case of failure, which data is not intact?
• Reading data, signaling remote CPU inefficient and impractical

 Add integrity hashes to a new operation
• Or, possibly, piggybacked on Flush (which would mean only one protocol change)
• Note, not unlike SCSI T10 DIF

 Hashing implemented in RNIC or Library “implementation”
• Algorithm(s) to be negotiated by upper layers
• Which could be in

• Platform, e.g. storage device itself
• RNIC hardware/firmware, e.g. RNIC performs readback/integrity computation
• Other hardware on target platform, e.g. chipset, memory controller
• Software, e.g. target CPU

 Roughly mapped to SNIA NVMP TWG OptimizedFlushAndVerify()
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WRITE, FLUSH AND VERIFY
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PRIVACY

 Upper layers protect their send/receive messages today
 But RDMA direct transfers are not protected

• No RDMA encryption standard
 Desire to protect User Data with User Key

• Not global, machine or connection key!
• Rules out IPsec, TLS, DTLS
 Why not just use the on-disk crypto?

• Typically a block cipher, requiring block not byte access
• No integrity – requires double computation
 Authenticated stream cipher (e.g. AES-CCM/GCM as used by SMB3)

• Provides wire privacy *and* integrity, efficiently
• (not at-rest – still need RDMA Verify)

• Arbitrary number of bytes per transfer
• Shares cipher and keying with upper layer
• But, how to plumb key into RDMA NIC message processing?
 Enhance RDMA Memory Regions

• Which does not require RDMA protocol change!
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RDMA WRITE ENCRYPTION

 Extend MR verb 
and NIC TPT to 
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• Handle = Register(PD, 
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CIPHER HOUSEKEEPING

 Authenticated ciphers typically employ nonces (e.g. AES-GCM)
• Same {key,nonce} pair used at each end to encrypt/decrypt each message
• Never reuse nonce for different payload!

• Upper layer must coordinate nonce usage with RDMA layer
• RDMA layer must consider when retrying

• NIC may derive nonce sequence from RDMA connection
• E.g. from RDMA msn. Not from the MR!

• Alternatively, prepend/append to data buffer
• Upper layer consumes nonce space, too

 Re-keying necessary when nonce space exhausted!
• Nonces are large (SMB3 employs 11 bytes for GCM), but require careful 

management and sharing with ULP
• Key management is upper layer responsibility, as it should be
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RDMA QOS

 Upper layers have no trouble saturating even 100Gb networks 
with RDMA today
 Memory can sink writes at least this fast
Networks will rapidly congest

• Rate control, fairness and QoS are required in the RDMA NIC

 Simplistically, bandwidth limiting
 More sophisticated approach desirable

• Classification/end-to-end QoS techniques
• SDC2014 presentation (“resources” slide)

• Software-Defined Network techniques
• Generic Flow Table-based policy

 Existing support in many Enterprise-class NICs
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WINDOWS PMEM SUPPORT
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WINDOWS PERSISTENT MEMORY

 Persistent Memory is supported in Windows
• PMEM support is foundational in Windows going forward

 Support for JEDEC-defined NVDIMM-N devices available from
• Windows Server 2016
• Windows 10 (Anniversary Update – Fall 2016)

 PMDK is fully supported by Windows
• Code and binaries available on Github (Resources slide)
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WINDOWS PMEM ACCESS

DAX mode (at right)
 Direct Access app obtains direct access to 

PMEM via existing memory-mapping semantics
 Updates directly modify PMEM, Storage Stack 

not involved (Green data path)
 True device performance (no software 

overhead)
 Byte-Addressable
 “NVM.PM.FILE”
 Available since Windows 10 Anniversary 

Update / Server 2016

Block mode (at left)
 App continues to use traditional kernel-

mediated APIs (File and Block)
 Full compatibility with existing apps
 Improved performance via underlying hardware
 “NVM.PM.VOLUME”
 Available since Windows 10 Anniversary 

Update / Server 2016

PMEM-Aware (later slide)
 “PMEM-aware” open coded
 Native “Rtl” API (Windows 10 Spring 2017 and 

future Server)
 PMDK open source
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WINDOWS NATIVE PMEM APIS

 Available from both user and kernel modes
 Flush to durability in optimal fashion for each hardware architecture
 Supported in Windows 10 1703 (Spring 2017) and Windows Server (future)

 RtlGetNonVolatileToken
https://msdn.microsoft.com/en-us/library/windows/hardware/mt800701.aspx

 RtlWriteNonVolatileMemory
https://msdn.microsoft.com/en-us/library/windows/hardware/mt800702.aspx

 RtlFlushNonVolatileMemory/RtlFlushNonVolatileMemoryRanges
https://msdn.microsoft.com/en-us/library/windows/hardware/mt800698.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/mt800699.aspx

 RtlDrainNonVolatileFlush
https://msdn.microsoft.com/en-us/library/windows/hardware/mt800697.aspx

 RtlFreeNonVolatileToken
https://msdn.microsoft.com/en-us/library/windows/hardware/mt800700.aspx
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USING DAX IN WINDOWS

DAX Volume Creation

DAX Volume Identification
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IMPLICIT FLUSH CODE EXAMPLE

Memory Mapping:
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EXPLICIT FLUSH CODE EXAMPLE

PVOID token = RtlGetNonVolatileToken(baseAddress, size, &token);

for (;;)

{

*(int *)baseAddress = random(); // Write to PMEM

RtlFlushNonVolatileMemory(token, baseAddress, sizeof(int), 0); // flags=0

baseAddress += sizeof(int);

}

RtlFreeNonVolatileToken(token);

CloseHandle(hMapping);
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ASYNCHRONOUS FLUSH CODE EXAMPLE

PVOID token = RtlGetNonVolatileToken(baseAddress, size, &token);

for (;;)

{

*baseAddress = random(); // Write to PMEM

RtlFlushNonVolatileMemory(token, baseAddress, sizeof(int),

FLUSH_NV_MEMORY_IN_FLAG_NO_DRAIN );

baseAddress += sizeof(int);

// do more stuff

RtlDrainNonVolatileFlush(token); // Wait for prior Flush

}

RtlFreeNonVolatileToken(token);

CloseHandle(hMapping);
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1

2

3

1 Traditional i/o
2 DAX memcpy by 
SMB3 Server
3 Push Mode direct 
from RDMA NIC

EXAMPLE: GOING REMOTE – SMB3

 SMB3 RDMA and “Push 
Mode”

 SMB3 Server may 
implement DAX-mode 
direct mapping (2)
• Reduced server overhead

 RDMA NIC may implement 
Flush extension (3)
• Enables zero-copy remote

read/write/flush to DAX file
• Ultra-low latency and overhead

 2, 3 can be enabled before
RDMA extensions become 
available, with slight extra 
cost
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RESOURCES

 SNIA NVM Programming TWG:
• http://www.snia.org/forums/sssi/nvmp
• NVMP 1.2

https://www.snia.org/sites/default/files/SDC/2017/presentations/Solid_State_Stor_NVM_PM_NVDIMM/
Talpey_Tom_Microsoft%20_SNIA_NVM_Programming_Model_V%201.2_and_Beyond.pdf

 SNIA Storage Developers:
• Remote Persistent Memory – With Nothing But Net

https://www.snia.org/sites/default/files/SDC/2017/presentations/Solid_State_Stor_NVM_PM_NVDIMM/
Talpey_Tom_RemotePersistentMemory.pdf

• Low Latency Remote Storage – A Full-stack View
https://www.snia.org/sites/default/files/SDC/2016/presentations/persistent_memory/Tom_Talpey_Low_L
atency_Remote_Storage_A_Full-stack_View.pdf

• Storage Quality of Service for Enterprise Workloads
https://www.snia.org/sites/default/files/TomTalpey_Storage_Quality_Service.pdf

 Windows PMEM Programming:
• https://msdn.microsoft.com/en-us/library/windows/hardware/ff553354.aspx
• https://github.com/pmem/pmdk
• https://github.com/pmem/pmdk/releases

 Open Fabrics Workshop:
• Remote Persistent Memory Access - Workload Scenarios and RDMA Semantics

https://www.openfabrics.org/images/eventpresos/2017presentations/405_RemotePM_TTalpey.pdf
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