
14th ANNUAL WORKSHOP 2018

PERSISTENT MEMORY OVER FABRICS
BEYOND HIGH AVAILABILITY

Paul Grun
April 10, 2018

REMOTE PERSISTENT MEMORY

OpenFabrics Alliance Workshop 20182

 Remote Persistent Memory is something different

 It might prove to be a transformative technology

 It’s unlikely to take the industry by storm

 It’s going to take some work

Objective for today is to establish the basis for a detailed
exploration of Remote Persistent Memory

 Significant work already done on RPM for High Availability
• Well-defined use case
• Requirements are pretty well understood

 But not too much work on other use cases … yet
• Use cases not as well defined
• Why?

3 OpenFabrics Alliance Workshop 2018

Which came first,

or the application egg?

the technology chicken?

SCOPE FOR AN RPM DISCUSSION

 Locality
• A PM device accessed over a network
• A local PM device attached to an I/O bus or a memory channel

 Access Method
• Persistent Memory as a target of memory operations (hence, ‘memory’)
• Persistent Memory as a target of I/O operations e.g. NVMe

 Implementation
• Byte-addressable non-volatile memory, or
• Block-based NVM devices

4 OpenFabrics Alliance Workshop 2018

Note the distinction between access method and implementation

ACCESS METHOD - MEMORY VS I/O

5

I/O
- An extent (block) of data is transferred between

memory and a storage device
- The block is identified by an abstract, protocol-

specific identifier (e.g. an LBA)
- Uses asynchronous I/O techniques

Memory operations
- Data is moved between a CPU register and a

memory location
- Memory location is identified by a real or virtual

memory address
- Fast and synchronous - no CPU stalls

Let’s agree: PM refers to accesses to a non-volatile
memory device using memory semantics

AGENDA

 System and Memory Models

 An Example Application

 A Multi-dimensional Problem, Some Factors to Consider

 Various Use Cases for Remote Persistent Memory

 What’s Next

6 OpenFabrics Alliance Workshop 2018

GENERAL SYSTEM VIEW

OpenFabrics Alliance Workshop 20187

NIC

CPU

DDR

NIC

CPU

DDR

NIC

CPU

DDR

. . .

RPM
service
node

NIC
RPM

service
node

NIC
RPM

service
node

NIC

network

NIC

Port

NIC

Port

Controller

Persistent
Memory

Think of Remote Persistent Memory as a service located on a network

MEMORY MODEL

OpenFabrics Alliance Workshop 20188

NIC

CPU

DDR

NIC

CPU

DDR

NIC

CPU

DDR

. . .

RPM
service
node

NIC
RPM

service
node

NIC
RPM

service
node

NIC

network

Organized into pools,
accessed as memory

Can be configured as a
flat address space, or as
object storage

Or both

RPM FOR GRAPH ANALYTICS

OpenFabrics Alliance Workshop 20189

 Why?
• Operate on larger graphs than would fit in local memory

• Solve Petabyte-sized graph problems on 1,000 node systems
• As opposed to 10,000 nodes

• Persist data structures between program executions
• Run multiple query jobs sequentially and potentially in parallel

• Use existing programming models and languages
• Make better use of available DRAM for algorithms, not just holding data

 Alternatives
• Limit the size of graphs one can study to what fits in memory
• Use out-of-core methods which store graph data structures on disk

• Apply traditional HPC graph algorithms, but only read in portions of the graph at a
time

• Store graphs in large NoSQL database, write new algorithms

EXAMPLE - INTRUSION DETECTION

Demonstrates key differentiators of RPM
• Small word random access
• Very large data structures sparsely accessed over an extended time

After an initial alert the time and data
intensive work begins
• Verify a compromise
• Determine the scope

Typically done by examining comms logs
• Netflow is the most popular format
• Contact chaining of compromised computers with potential victims

10 OpenFabrics Alliance Workshop 2018

PYTHON COLLECTIONS OVER RPM

Created Python modules that implement
various collection modules
• TCP sockets for transport
• Pickle objects for serialization
• Key-Value servers run on compute nodes

Maintained Python API
• Requires a name and a meta server for each collection

Anyone who can use a Python dictionary can
use these modules
• Maintaining the collections API and functionality was of primary

concern
• Performance was secondary – but still good!

11 OpenFabrics Alliance Workshop 2018

MORE POSSIBLE APPLICATION TARGETS

 Scale up Databases
• Operate on datasets larger than would fit into traditional memory
• Persist data structures between program executions
• Avoid disk accesses

 Scale out (distributed) Databases
• Simple methods for creating a common data store shared among instances
• Persist data structures
• Avoid disk accesses

 Graph Analytics
• Mentioned previously

 HPC Applications
• GLOBALMEM symmetric heap
• Asymmetric RPM regions

12 OpenFabrics Alliance Workshop 2018

SOME KEY FACTORS

13

• Programming environment?
• SHMEM
• Python
• Java
• Chapel, UPC

• NVM device implementation?
• Block-based vs byte addressable device
• Driven by access patterns and economics

• Memory model?
• flat memory model
• object-based model

• Target application?
• Analytics
• HPC
• DB apps

• System objective?
• scale out/up?
• server disaggregation?
• persistence?

• Resource allocation?
• Job launch?
• At runtime?

Factors that may, or may not, have an impact on API and fabric design

PM DEVICE IMPLEMENTATION

14

• Byte addressable NVM devices
- $$
- Big capacity

• NAND Flash
- Existing analytics frameworks stream data sequentially
- A flash-based system could be cost effective

• NVDIMM
- capacity limited

NIC

Port

NIC

Port

Controller

Persistent
Memory

byte addressable

NAND Flash

NVDIMM

Regardless of the
technology on which RPM
is implemented, it is still
accessed as remote
memory

The technology choice is
driven by application
access patterns and by
economics

Persistent Memory Node (0 of m)

PoolPool

Flat Memory Model, Object Store

15
6/20/2017

Confidential and Proprietary.
Use or Disclosure is subject to the restrictions set forth on pages 2 and 3.

Compute Node (0 of n)

Flat Memory-Consuming Application

SHMEM Library

Region

Flat Address
Instance B

Region

Object
Instance A

Unallocated
Region

Memory
Allocation

Memory
Allocation Memory

Object

Memory
Object

Presented As Large Flat Global Address Space Across Allocation

Persistent Memory Node (1 of m)

PoolPool

Region

Flat Address
Instance B

Region

Object
Instance A

Unallocated
Region

Memory
Allocation

Memory
Allocation Memory

Object

Memory
Object

Persistent Memory Node (0 of m)

PoolPool

Object Store, Flat Memory Model

Compute Node (0 of n)

Object-Consuming Application

Application Library

Region

Flat Address
Instance

Region

Object
Instance A

Unallocated
Region

Memory
Allocation

Memory
Allocation Memory

Object

Memory
Object

Presented Application Object

Persistent Memory Node (1 of m)

PoolPool

Region

Flat Address
Instance

Region

Object
Instance A

Unallocated
Region

Memory
Allocation

Memory
Allocation Memory

Object

Memory
Object

Presented AO
Presented AO

Presented AO
Presented AO

4/10/2018
Confidential and Proprietary. Use or Disclosure is subject to the

restrictions set forth on pages 2 and 3.
16

FLAT MEMORY VS OBJECT STORE

• Flat Memory
• Simple, well-understood memory model
• Difficult to share among uncoordinated apps

• Object Store
• Sharing of memory-resident data across uncoordinated processes,

languages
• Named data persists across jobs, program executions, and time
• Complex big data analyses across larger datasets
• Database-like features
• Security, resiliency
• Good for high value data

17

Expect both to be implemented – APIs and networks should support either

FLAT MEMORY TARGET NODE

OpenFabrics Alliance Workshop 201818

user application

communications
library

NIC

provider

NIC

m
em

ory controller

persistent
m

em
ory

provider

control /
config

API exports memory semantics
e.g. Put/Get RMA operations

Device resource
allocation, operation
setup

Optimized path for memory
reads/writes. No software in
the access path

OBJECT STORE TARGET NODE

OpenFabrics Alliance Workshop 201819

user application

client library

NIC

provider

server

NIC

m
em

ory controller

persistent m
em

ory

provider

API exports objects to
client object library

Provides object services
- journaling
- sharding/resiliency
- allocation
- data aging
- object versions

Object Transport
H/W accelerated translation of
objects to memory addresses

SYSTEM OBJECTIVES

 High availability
• Replicate local cache to RPM to achieve High Availability

 Scale out
• Scale out distributed database or analytics applications
 shared Remote Persistent Memory

 Scale up
• Scale up databases that exceed local memory capacity
 unshared Remote Persistent Memory

 Disaggregation / independent scaling of memory and compute
• Applications that scale linearly with memory footprint
 unshared Remote Persistent Memory

20

USE CASE: HIGH AVAILABILITY, REPLICATION

21

What it looks like

How it works

Usage: replicate data that is stored in
local PM across a fabric and store it in
remote PM

“High Availability”

USE CASE: REMOTE PERSISTENT MEMORY

22

How it works

What it looks like

Usage: Expand on-node memory
capacity, while taking advantage of
persistence (or not). Disaggregate
memory from compute.remote

memory
service

PM

PM

PM

app

DDR

NIC

app

DDR

NIC

…

user Remote
PM

completion

put

“Scalable Memory”

USE CASE: SHARED PERSISTENT MEMORY

23

What it looks like How it works

Usage: Information is shared among
the elements of a distributed
application. Persistence can be used
to guard against node failure.

PM

app

NIC

app

NIC

Remote Shared
Memory Service

user

Remote
PM

completion

user

put get

notice

“Scale-out Applications”

FACTORS AFFECTING THE API/NETWORK

 Object Store
• Export object semantics to the consumer
• Intelligence in the target node to manage object features

 Flat Memory
• Export memory semantics to the consumer
• Simple target node designs
• Address translation features

 PM Technology
• Block oriented devices may require intelligence for byte level access
• Byte oriented devices may require more sophisticated network protocols

 Resource Allocation
• Resource allocation to applications whether scale-out or scale-up

24 OpenFabrics Alliance Workshop 2018

STEPS FORWARD – A LOT TO THINK ABOUT

 Remote PM for High Availability has been discussed
extensively
• A set of fabric features to support HA has been explored, and is in process

Getting beyond HA
• Begin by understanding the relevant use cases

• Even those that don’t yet exist
• Understand the access patterns and value propositions associated with

those use cases
• Use those to develop “application centric requirements” to drive API design
• Develop the necessary APIs

25 OpenFabrics Alliance Workshop 2018

DRIVING ADOPTION OF RPM

OpenFabrics Alliance Workshop 201826

Adoption of Remote Persistent Memory requires:

- A common understanding among application
developers of the behaviors that are required to
reliably access Remote Persistent Memory,

- The means for an application to implement
those required behaviors

This is going to take some serious effort

SNIA

OFA

ANNOUNCING - SNIA & OPENFABRICS ALLIANCE

OpenFabrics Alliance Workshop 201827

SNIA NVMP TWG OpenFabrics Alliance

Develop RPM use cases

Create user-driven API
Reqmts

Open Source
Frameworks & APIs

Create and Document
Programming models

Vendors develop n/w solutions

14th ANNUAL WORKSHOP 2018

THANK YOU
Paul Grun
Cray Inc

	Persistent Memory over Fabrics�Beyond High Availability
	Remote Persistent Memory
	Slide Number 3
	Scope for an RPM Discussion
	Access Method - Memory vs I/O
	Agenda
	General system view
	Memory model
	RPM for Graph analytics
	example - intrusion detection
	python collections over RPM
	more possible application targets
	Some key factors
	PM Device implementation
	Flat Memory Model, Object Store
	Object Store, Flat Memory Model
	flat memory vs object store
	Flat Memory target node
	object store Target node
	System objectives
	Use Case: High Availability, Replication
	Use Case: Remote Persistent Memory
	Use Case: Shared Persistent Memory
	factors affecting the API/network
	steps forward – a lot to think about
	driving adoption of RPM
	Announcing - SNIA & Openfabrics alliance
	THANK YOU

