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REMOTE PERSISTENT MEMORY
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 Remote Persistent Memory is something different

 It might prove to be a transformative technology

 It’s unlikely to take the industry by storm

 It’s going to take some work

Objective for today is to establish the basis for a detailed 
exploration of Remote Persistent Memory



 Significant work already done on RPM for High Availability
• Well-defined use case
• Requirements are pretty well understood

 But not too much work on other use cases … yet
• Use cases not as well defined
• Why?
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Which came first,

or the application egg?

the technology chicken?



SCOPE FOR AN RPM DISCUSSION

 Locality
• A PM device accessed over a network
• A local PM device attached to an I/O bus or a memory channel

 Access Method
• Persistent Memory as a target of memory operations (hence, ‘memory’)
• Persistent Memory as a target of I/O operations e.g. NVMe

 Implementation
• Byte-addressable non-volatile memory, or
• Block-based NVM devices
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Note the distinction between access method and implementation



ACCESS METHOD - MEMORY VS I/O
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I/O
- An extent (block) of data is transferred between 

memory and a storage device  
- The block is identified by an abstract, protocol-

specific identifier (e.g. an LBA)
- Uses asynchronous I/O techniques

Memory operations
- Data is moved between a CPU register and a 

memory location  
- Memory location is identified by a real or virtual 

memory address
- Fast and synchronous - no CPU stalls

Let’s agree: PM refers to accesses to a non-volatile 
memory device using memory semantics



AGENDA

 System and Memory Models

 An Example Application

 A Multi-dimensional Problem, Some Factors to Consider

 Various Use Cases for Remote Persistent Memory

 What’s Next
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GENERAL SYSTEM VIEW

OpenFabrics Alliance Workshop 20187

NIC

CPU

DDR

NIC

CPU

DDR

NIC

CPU

DDR

.  .  .

RPM
service 
node

NIC
RPM

service 
node

NIC
RPM

service 
node

NIC

network

NIC

Port

NIC

Port

Controller

Persistent
Memory

Think of Remote Persistent Memory as a service located on a network



MEMORY MODEL
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RPM FOR GRAPH ANALYTICS
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 Why?
• Operate on larger graphs than would fit in local memory 

• Solve Petabyte-sized graph problems on 1,000 node systems
• As opposed to 10,000 nodes

• Persist data structures between program executions
• Run multiple query jobs sequentially and potentially in parallel

• Use existing programming models and languages
• Make better use of available DRAM for algorithms, not just holding data

 Alternatives
• Limit the size of graphs one can study to what fits in memory
• Use out-of-core methods which store graph data structures on disk

• Apply traditional HPC graph algorithms, but only read in portions of the graph at a 
time

• Store graphs in large NoSQL database, write new algorithms



EXAMPLE - INTRUSION DETECTION

Demonstrates key differentiators of RPM
• Small word random access
• Very large data structures sparsely accessed over an extended time

After an initial alert the time and data 
intensive work begins
• Verify a compromise
• Determine the scope

Typically done by examining comms logs
• Netflow is the most popular format
• Contact chaining of compromised computers with potential victims
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PYTHON COLLECTIONS OVER RPM

Created Python modules that implement 
various collection modules
• TCP sockets for transport
• Pickle objects for serialization
• Key-Value servers run on compute nodes

Maintained Python API
• Requires a name and a meta server for each collection

Anyone who can use a Python dictionary can 
use these modules
• Maintaining the collections API and functionality was of primary 

concern
• Performance was secondary – but still good!
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MORE POSSIBLE APPLICATION TARGETS

 Scale up Databases
• Operate on datasets larger than would fit into traditional memory
• Persist data structures between program executions
• Avoid disk accesses

 Scale out (distributed) Databases
• Simple methods for creating a common data store shared among instances
• Persist data structures
• Avoid disk accesses

 Graph Analytics
• Mentioned previously

 HPC Applications
• GLOBALMEM symmetric heap
• Asymmetric RPM regions 
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SOME KEY FACTORS
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• Programming environment?
• SHMEM
• Python
• Java
• Chapel, UPC

• NVM device implementation?
• Block-based vs byte addressable device
• Driven by access patterns and economics

• Memory model?
• flat memory model
• object-based model

• Target application?
• Analytics
• HPC
• DB apps

• System objective?
• scale out/up?
• server disaggregation?
• persistence?

• Resource allocation?
• Job launch?
• At runtime?

Factors that may, or may not, have an impact on API and fabric design



PM DEVICE IMPLEMENTATION
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• Byte addressable NVM devices
- $$
- Big capacity

• NAND Flash
- Existing analytics frameworks stream data sequentially
- A flash-based system could be cost effective

• NVDIMM 
- capacity limited
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Regardless of the 
technology on which RPM 
is implemented, it is still 
accessed as remote 
memory

The technology choice is 
driven by application 
access patterns and by 
economics



Persistent Memory Node (0 of m)

PoolPool

Flat Memory Model, Object Store
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Persistent Memory Node (0 of m)

PoolPool

Object Store, Flat Memory Model
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FLAT MEMORY VS OBJECT STORE

• Flat Memory
• Simple, well-understood memory model
• Difficult to share among uncoordinated apps

• Object Store
• Sharing of memory-resident data across uncoordinated processes, 

languages
• Named data persists across jobs, program executions, and time
• Complex big data analyses across larger datasets
• Database-like features
• Security, resiliency
• Good for high value data
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Expect both to be implemented – APIs and networks should support either



FLAT MEMORY TARGET NODE
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OBJECT STORE TARGET NODE
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SYSTEM OBJECTIVES

 High availability
• Replicate local cache to RPM to achieve High Availability

 Scale out 
• Scale out distributed database or analytics applications
 shared Remote Persistent Memory

 Scale up
• Scale up databases that exceed local memory capacity
 unshared Remote Persistent Memory

 Disaggregation / independent scaling of memory and compute
• Applications that scale linearly with memory footprint
 unshared Remote Persistent Memory
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USE CASE: HIGH AVAILABILITY, REPLICATION
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What it looks like

How it works

Usage: replicate data that is stored in 
local PM across a fabric and store it in 
remote PM

“High Availability”



USE CASE: REMOTE PERSISTENT MEMORY
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How it works

What it looks like

Usage: Expand on-node memory 
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persistence (or not).  Disaggregate 
memory from compute.remote 
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USE CASE: SHARED PERSISTENT MEMORY
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What it looks like How it works

Usage: Information is shared among 
the elements of a distributed 
application. Persistence can be used 
to guard against node failure.
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“Scale-out Applications”



FACTORS AFFECTING THE API/NETWORK

 Object Store
• Export object semantics to the consumer
• Intelligence in the target node to manage object features

 Flat Memory
• Export memory semantics to the consumer
• Simple target node designs
• Address translation features

 PM Technology
• Block oriented devices may require intelligence for byte level access
• Byte oriented devices may require more sophisticated network protocols

 Resource Allocation
• Resource allocation to applications whether scale-out or scale-up
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STEPS FORWARD – A LOT TO THINK ABOUT

 Remote PM for High Availability has been discussed 
extensively
• A set of fabric features to support HA has been explored, and is in process

Getting beyond HA
• Begin by understanding the relevant use cases

• Even those that don’t yet exist
• Understand the access patterns and value propositions associated with 

those use cases
• Use those to develop “application centric requirements” to drive API design
• Develop the necessary APIs
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DRIVING ADOPTION OF RPM
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Adoption of Remote Persistent Memory requires:

- A common understanding among application 
developers of the behaviors that are required to 
reliably access Remote Persistent Memory,

- The means for an application to implement 
those required behaviors 

This is going to take some serious effort

SNIA

OFA



ANNOUNCING - SNIA & OPENFABRICS ALLIANCE
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SNIA NVMP TWG OpenFabrics Alliance

Develop RPM use cases

Create user-driven API 
Reqmts

Open Source
Frameworks & APIs

Create and Document 
Programming models

Vendors develop n/w solutions
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