
14th ANNUAL WORKSHOP 2018

NVMf based Integration of Non-volatile Memory
in a Distributed System - Lessons learned

Jonas Pfefferle, Bernard Metzler, Patrick Stuedi,
Animesh Trivedi and Adrian Schuepbach

April 2018
IBM Zurich Research

Outline

 Target Distributed System: Apache Crail
 NVMf

• Basic operation
• Available implementations

 The Crail NVMf Tier
• Integration with Crail
• Implementation details
• A new NVMf host library

 Measurements
• Microbenchmarks
• TeraSort
• TPC-DS workload

 Summary & Outlook

2 OpenFabrics Alliance Workshop 2018

The Target System: Apache Crail (Incubating)

 Targets I/O acceleration for Big Data frameworks due to
user level and asynchronous I/O
 Implements efficient distributed store for ephemeral

data at native hardware speeds
 Unifies isolated, incompatible efforts to integrate high

performance I/O with BigData
processing frameworks
 Enables dramatically faster job

completion
 Applicable to Spark, Flink,

TensorFlow, Caffee, …
 Flexibly makes best use of

available I/O infrastructure
 Apache Incubator Project

(since 11/17)

3 OpenFabrics Alliance Workshop 2018

Apache Crail
NVMf SPDKRDMATCP

FS Streaming KV HDFS

Fast Network (100Gb/s RoCE, etc.)

Data Processing Framework
(Spark, TensorFlow, λ Compute, …)

PCM GPUNVMeDRAM …

10th of GB/s
< 10 µsec

Ho
st

 M
em

or
y

Ho
st

 M
em

or
y,

De
vi

ce
 M

em
or

y,
PC

I B
us

Ho
st

 M
em

or
y,

De
vi

ce
 M

em
or

y,
PC

I B
us

RD
M

A
Fa

br
ic

NVMf in a Nutshell

 Extends low latency NVMe interface
over distance
• Retains BW and latency (< 5us additional delay)
• Allows to retain user level I/O capability
• Message based NVMe operations
• Host/Target model

 Defined transports: RDMA (IB, RoCE,
iWarp), or FC
• Mapping of I/O Submission + Completion Queue

to RDMA QP model

 Fabrics + Admin Commands
• Discover, Connect, Authenticate, …

 I/O Commands
• SEND/RECV to transfer Command/Response

Capsules (+ optionally data)
• READ/WRITE to transfer data

OpenFabrics Alliance Workshop 20184

Ho
st

 M
em

or
y,

De
vi

ce
 M

em
or

y,
PC

I B
us

RDMA
QP

RDMA
QP

NVMf
SQ/CQ

NVMf
SQ/CQ

IO cmd
post_send

SEND

recv comp

NVMe
Device

NVMe read

CMD comp
post_send

SEND

WRITE’s

recv compSubmission
Queue Entry Data or SGLs (if present)

0 63 N-1

Command Capsule

Completion
Queue Entry Data* (if present)

0 63 N-1

Response Capsule

Host Target

IO cpl

NVM read command

*Not with RDMA transport

Hardware Offload

OS Kernel
(Block Layer)

User Level

NVMf Implementations available

5 OpenFabrics Alliance Workshop 2018

Host Target

SPDK nvme
jNVMf*

(Linux nvme-rdma) Linux nvmet-rdma

SPDK nvmf_tgt

Mellanox CX5 nvmet-rdma

*https://github.com/zrlio/jNVMf

Landscape of NVMf Implementations (Target)

OpenFabrics Alliance Workshop 20186

Host Memory

RDMA NIC NVMe Device

PCI Bus

Controller
Memory Buffer

Staging Memory
Buffer

RDMA
SQ

RDMA
RQ

NVMe
SQ

NVMe
CQ

RDMA
CQ

NVMf Target
(offloaded)RDMA Transport

NVMf Target
(Host)

Network

DoorbellDoorbell
SQ RQ CQ

Mellanox Target Offloading (w/o CMB)

OpenFabrics Alliance Workshop 20187

Host Memory

RDMA NIC NVMe Device

PCI Bus

Staging Memory
Buffer

RDMA
SQ

RDMA
RQ

NVMe
SQ

NVMe
CQ

RDMA
CQ

NVMf Target
(offloaded)RDMA Transport

NVMf Target
(setup only)

Network

DoorbellDoorbell

Crail: The NVMf Tier

 Another fast storage tier in Crail
• I/O to distributed NVMe at its native speed
• Uses NMVf for remote NVM access
• User level I/O at client side

 Flexibility
• Storage disaggregation or integration
• Spill over from DRAM, or dedicated tier

 NVMf integration
• Client library
• Data node implementation

8 OpenFabrics Alliance Workshop 2018

RDMA

Crail Core

DRAM NVMf BlkDev…

SRPNVMf

Data Processing

“/”

“tmp/” “shuffle/”

High Performance
RDMA Network or TCP/IP

…

file

DRAM
block

NVM
block

Disaggregated
NVM

Integrated
DRAM/NVM

data
node

Crail namespace

Putting Things together – NVMf in Crail

 Crail Storage Tier Control
• Connects to any NVMf Target code

• SPDK, Linux kernel, Offload
• Registers targets NVMe blocks with

NameNode(s)
• Not in the block read/write NVMf fast

path client > target

 Crail NVMf Client
• Deploys NVMf Host code

• SPDK host library, or
• jNVMf host library

• Connects with NVMf Target(s)
• Gains NVMe block access info

via NameNode
• Allows for application

sub-block read/write access
• Must implement RMW

9 OpenFabrics Alliance Workshop 2018

Name Node(s) Client(s)

Storage Tier
Control

Resource
Registration

Metadata
Operations

Read/Write
data blocks

NVMf
NVMf Target(s)

Target Control

NVMe devices

 Crail Name Node
• Maintain storage resources

• Get blocks registered
• Give out blocks and back
• May write logs

Crail NVMf Tier Design Discussion

 NVMf tier must follow semantics of all
Crail storage tiers:
• Provide bytegranular access to data store, but
• Must cope with block only media access
• RMW implementation

• NVMf does not support byte offset access
for RDMA transport (no bit bucket type)

• Becomes client activity above NVMf host
• Adds another full network round trip

 Try to avoid unaligned accesses
 Append only
 Use buffered streams which internally aligns

to block and buffer sizes
• But cannot avoid unaligned access when

closing and reopening buffered stream

10 OpenFabrics Alliance Workshop 2018

Crail File

Unaligned offset

Sector

Close stream:
Need to write full sector

Open stream:
Read-modify-write

jNVMf: Yet another NVMf Host Library?

 Dependencies and Stability
• SPDK  DPDK
• Memory management
• Bugs
• DPDK not meant to be used as a library:

• “owns” application
• No shared library build

 Clean slate approach: jNVMf
• Simpler memory management
• Incapsule data support (write accel.)
• Dataset management support
• RDMA inline SEND support (read accel.)
• Reduced JNI overhead
• Easier to integrate with Crail

11 OpenFabrics Alliance Workshop 2018

Submission
Queue Entry Data or SGLs (if present)

0 63 N-1

Command Capsule

NVM write command with incapsule data:
• Avoid RDMA Read RTT

RDMA SEND

Crail Storage Tier Crail Client

NVMf Tier

jNVMf

DiSNI

libdisni

Ja
va

 D
ire

ct
 S

to
ra

ge

an
d

N
et

w
or

ki
ng

 IF

NVMe Devices we deployed

NVMe
Version

Read
Latency
(4K)

Write
Latency
(4K)

Read
IOPS
(4K)

Write
IOPS
(4K)

Read
Throughput

Write
Throughput

Samsung 960Pro 1.2 53.3us 7.8us 483K 386K 3186MB/s 1980MB/s

Intel 3D XPoint 900p 1.2 6.3us 7.2us 580K 557K 2586MB/s 2195MB/s

12 OpenFabrics Alliance Workshop 2018

Many advanced NVMe features not supported:
• Scatter-gather list
• Arbitration mechanisms
• Namespace management (or only 1 namespace is supported)
• Controller memory buffer

NVMf Latency 4k (Read)

13 OpenFabrics Alliance Workshop 2018

• Intel 900p device
• SPDK host

• SPDK target fastest
• Linux kernel and CX-5

offload similar delay
• Zero CPU load for

CX-5 target
(CPU load not shown)

Comparing NVMf targets: SPDK, Linux Kernel, CX-5 offload

SPDK vs jNVMf Latency 4k (Write)

14 OpenFabrics Alliance Workshop 2018

• SPDK NVMf target
• Intel 900p device

• SPDK client and
jNVMf show similar
performance

• No ‘Java penalty’
• Enabling RDMA inline

Send gives marginal
advantage

• Enabling Incapsule
data saves 1 RTT

SEND[D]

SEND

TH

READ

SENDΔ
2.5us

de
vi

ce
 w

rit
e

Comparing NVMf host libraries: SPDK, jNVMf

NVMf IOPS 4k (Read)

15 OpenFabrics Alliance Workshop 2018

• Intel 900p device
• SPDK client

• CX-5 offload and
SPDK target saturate
device

• Kernel targets flattens
out at ~400K IOPs

• Zero CPU load for
CX-5 target
(CPU load not shown)

Queue Depth

Comparing NVMf targets: SPDK, Linux Kernel, CX-5 offload

SPDK vs jNVMf IOPS 4k (Write)

16 OpenFabrics Alliance Workshop 2018

• Intel 900p device
• SPDK target

• Both SPDK and jNVMf
host saturate device
already at QD 16

• jNVMf incapsule data
better for smaller QD

SEND[D]

SEND

TH

READ

SENDΔ
2.5us

de
vi

ce
 w

rit
e

Queue Depth

Comparing NVMf host libraries: SPDK, jNVMf

TeraSort and TPC-DS Benchmark Setup

 Setup
• 100Gbs RoCE: Mellanox ConnectX-5, SN2700
• 8 machines, 16 cores Intel E5-2690 @2.9Ghz
• 256GB DRAM, 128GB of it given to Spark

 NVMe devices used
• Samsung 960Pro 1TB

 NVMf Targets deployed
• SPDK 18.01
• Linux Kernel 4.13

 Experiments
• TPC-DS
• TeraSort

17 OpenFabrics Alliance Workshop 2018

Vanilla Spark setup:
• All data always kept in DRAM
• Input/Output to /tmpfs HDFS mount
• All intermediate operations in DRAM
• No disk spill

Crail NVMf setup:
• All data read and written within NVMf
• No shuffle etc. in DRAM

Spark TeraSort Benchmark
(Spark@DRAM vs Crail@NVMf)

18 OpenFabrics Alliance Workshop 2018

• Samsung 960Pro
• jNVMf client
• SPDK target
• Sorting 200GB
• Spark with

input/output and
map/reduce in DRAM

• Crail input/output +
map/reduce in NVMf

• Crail DRAM 3 times
faster than vanilla
Spark

• Crail 100% NVMf tier
clearly outperforms
vanilla Spark

• Reduce time same for
Crail DRAM or NVMf

• Some penalty during
Map phase
(write into NVMf)

TPC-DS Query Performance
(Spark@DRAM vs Crail@DRAM)

19 OpenFabrics Alliance Workshop 2018

• Spark with
input/output +
shuffle in DRAM

• Crail input/output +
shuffle in DRAM

• Almost all queries are
faster, up to 2.5x

• Crail makes more
efficient use of
available hardware
resources

TPC-DS Query Performance
(Spark@DRAM vs Crail@NVMf)

20 OpenFabrics Alliance Workshop 2018

• Samsung 960Pro
devices

• jNVMf client
• Kernel NVMf target
• Spark with

input/output +
shuffle in DRAM

• Crail input/output +
shuffle on NVMf

• Half of the queries
are faster

• Overall Crail with
NVMf faster than
Vanilla Spark in
DRAM: save cost and
speed up!

Summary & Outlook

 NVMf is the adequate extension of NVMe in a distributed system
• Allows efficient management of ephemeral data which do not fit into DRAM
• Using Crail + NVMf: lower cost and better performance

 NVMf supports clever device I/O management
• In-Capsule data accelerates short NVM writes
• Dataset management allows to pass hints to device - unfortunately not yet supported in all

NVMf implementations
• Adding Bit Bucket semantic to NVMf would help, even if target device is not capable of it

 We today mainly looked at DRAM replacement
• NVM performance is one aspect – persistency is another
• Working on NVMf tier data recovery feature (logging, replay)

 NVM tier access patterns need further investigation
• At file level – data are written sequentially, but
• Writing huge amounts of data in parallel – globally random access at device level

 Apache Crail including NVMf tier open source at
https://github.com/apache/incubator-crail

21 OpenFabrics Alliance Workshop 2018

https://github.com/apache/incubator-crail

14th ANNUAL WORKSHOP 2018

THANK YOU
Bernard Metzler

IBM Zurich Research

	NVMf based Integration of Non-volatile Memory�in a Distributed System - Lessons learned
	Outline
	The Target System: Apache Crail (Incubating)
	NVMf in a Nutshell
	NVMf Implementations available
	Landscape of NVMf Implementations (Target)
	Mellanox Target Offloading (w/o CMB)
	Crail: The NVMf Tier
	Putting Things together – NVMf in Crail
	Crail NVMf Tier Design Discussion
	jNVMf: Yet another NVMf Host Library?
	NVMe Devices we deployed
	NVMf Latency 4k (Read)
	SPDK vs jNVMf Latency 4k (Write)
	NVMf IOPS 4k (Read)
	SPDK vs jNVMf IOPS 4k (Write)
	TeraSort and TPC-DS Benchmark Setup
	Spark TeraSort Benchmark�(Spark@DRAM vs Crail@NVMf)
	TPC-DS Query Performance�(Spark@DRAM vs Crail@DRAM)
	TPC-DS Query Performance�(Spark@DRAM vs Crail@NVMf)
	Summary & Outlook
	THANK YOU

