
14th ANNUAL WORKSHOP 2018

OPENSHMEM AND OFI: BETTER TOGETHER
James Dinan, David Ozog, and Kayla Seager

[April 11, 2018]
Intel Corporation

NOTICES AND DISCLAIMERS

2 OpenFabrics Alliance Workshop 2018

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies
depending on system configuration.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual
performance. For more complete information about performance and benchmark results, visit http://www.intel.com/benchmarks .

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance
of that product when combined with other products. For more complete information visit http://www.intel.com/benchmarks .

Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and
"Meltdown." Implementation of these updates may make these results inapplicable to your device or system.

Intel® Advanced Vector Extensions (Intel® AVX)* provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing
AVX instructions may cause a) some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or
maximum turbo frequencies. Performance varies depending on hardware, software, and system configuration and you can learn more at
http://www.intel.com/go/turbo.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides
for more information regarding the specific instruction sets covered by this notice.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future
costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether
referenced data are accurate.

© 2018 Intel Corporation.
Intel, the Intel logo, and Intel Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as property of others.

Process 0

Private
Memory
Region

Process 1

Private
Memory
Region

Process 2

Private
Memory
Region

Process 3

Private
Memory
Region

WHAT IS OPENSHMEM?

 Open standard for SHMEM programming model
 Partitioned Global Address Space memory model, SPMD execution

• Part of the memory in a process is exposed for remote access
• Asynchronous read (get), write (put), and atomic update operations

 Fence (ordering), quiet (remote completion), barrier/wait (sync)

Symmetric
DataGlobal

Address
Space Symmetric

Heap

Symmetric
Data

Symmetric
Heap

Symmetric
Data

Symmetric
Heap

Symmetric
Data

Symmetric
HeapPrivate

Memory
Region

Private
Memory
Region

Private
Memory
Region

Private
Memory
Region

OPENSHMEM 1.4

 Specification ratified Dec. 14, 2017
• Thread safety
• Communication management API (contexts)
• Test, sync, calloc
• Bitwise atomic operations
• Updated C11 generic selection bindings

 Committee actively working on 1.5
• Happy to have you join us!

 Intel is engaged in the Sandia
OpenSHMEM implementation effort
• SOS v1.4.1 release candidate out
• Open source, supports OFI and Portals
• Req.: FI_RMA, FI_ATOMICS, FI_EP_RDM
• First open source implementation to support

OpenSHMEM 1.3 and 1.4
• https://github.com/Sandia-OpenSHMEM/SOS

4

https://github.com/Sandia-OpenSHMEM/SOS

OPENSHMEM 1.4 THREAD SAFETY

 Defines semantics of threads and OpenSHMEM routines
 Threading level selected at initialization:

• SHMEM_THREAD_SINGLE: No threading

• SHMEM_THREAD_FUNNELED: Master thread calls SHMEM API

• SHMEM_THREAD_SERIALIZED: Any thread calls SHMEM API, but serialized

• SHMEM_THREAD_MULTIPLE: Any thread calls SHMEM API, concurrently

 Sandia OpenSHMEM supports FI_THREAD_SAFE and COMPLETION
• FI_THREAD_SAFE: SOS-level atomics, no mutexes

• FI_THREAD_COMPLETION: SOS-level mutexes, but can be eliminated with user-provided hints

5

int shmem_init_thread(int requested, int *provided);
void shmem_query_thread(int *provided);

OPENSHMEM CONTEXTS: ISOLATION AND OVERLAP

 Programmer chooses which operations are completed by quiet
• Control communication/computation overlap
• Eliminate interference between threads

6

SHMEM PE

PutPutPut PutPutPutQuiet
PutPutPut

SHMEM PE

PutPutPut

PutPutPut

PutPutPutQuiet

Without Contexts With Contexts

OPENSHMEM 1.4 CONTEXTS API

 SHMEM_CTX_DEFAULT: Created during initialization
• Legacy SHMEM API operations are performed on the default context

 Context options:
• SHMEM_CTX_SERIALIZED: The given context will not be used by multiple threads concurrently

• SHMEM_CTX_PRIVATE: The given context will be used only by the thread that created it

 Options enable thread synchronization optimizations
• Need a way to pass hints to OFI in FI_THREAD_SAFE mode to relax synchronization

7

int shmem_ctx_create(long options, shmem_ctx_t *ctx);
void shmem_ctx_destroy(shmem_ctx_t ctx);

void shmem_ctx_putmem(shmem_ctx_t ctx, void *dest,
const void *source, size_t nbytes, int pe);

void shmem_ctx_fence(shmem_ctx_t ctx);
void shmem_ctx_quiet(shmem_ctx_t ctx);

CONTEXTS AND THREADS EXAMPLE

 Dynamic load balancing
• Threads process local tasks
• Proceed to help round-robin

 Contexts isolate threads
• Fetch-inc completion waits on

event counter
• Threads share counter
• Leads to interference

8

long task_cntr = 0; /* Next task counter */

int main(int argc, char **argv) {
long ntasks = 1024; /* Total tasks per PE */
...

#pragma omp parallel
{

shmem_ctx_t ctx;
int task_pe = shmem_my_pe(), pes_done = 0;
shmem_ctx_create(SHMEM_CTX_PRIVATE, &ctx);

while (pes_done < npes) {
long task = shmem_atomic_fetch_inc(ctx, &task_cntr, task_pe);
while (task < ntasks) {

/* Perform task (task_pe, task) */
task = shmem_atomic_fetch_inc(ctx, &task_cntr, task_pe);

}
pes_done++;
task_pe = (task_pe + 1) % shmem_n_pes();

}

shmem_ctx_destroy(ctx);
} /* End parallel section */

}

…
PE 0 PE 1 PE N

PE 1

SOS 1.4.X OFI TRANSPORT ARCHITECTURE

9

Fabric Domain

Address Vector

CQ

Buffered
Puts (opt)Put, AMO Get, Fetch

AMO

Put CNTR Get CNTR

FI_WRITE FI_READ FI_TRANSMIT

CNTR EP CQ EP

Put, Get,
AMO

Put
CNTR

FI_WRITE

CNTR EP

Get
CNTR

FI_READ

CQ

Remote VA: One
MR exposes full VA

FI
Address

RX
CNTR

RMA
Target

RX EP

STX STX STX STX

SHMEM_CTX_DEFAULTUser Context

Heap MR Data MR

CQ CQ

Fabric Domain

Put, Get,
AMO

Put
CNTR

FI_WRITE

CNTR EP

Put, Get,
AMO

CNTR EP

STX

THREAD-AWARE RESOURCE PRIVATIZATION

 Use shareable transmit context (STX)
• Leverage thread-context mapping hints to optimize STX assignment
• Scalable endpoints TX resource is automatic, can’t optimize for usage model

10

Get
CNTR

FI_READ

Put
CNTR

FI_WRITE

Get
CNTR

FI_READ
CQ CQ

Put, Get,
AMO

Put
CNTR

FI_WRITE

CNTR EP

Put, Get,
AMO

CNTR EP

STX

Get
CNTR

FI_READ

Put
CNTR

FI_WRITE

Get
CNTR

FI_READ
CQ CQ

Put, Get,
AMO

Put
CNTR

FI_WRITE

CNTR EP

Put, Get,
AMO

CNTR EP

STX

Get
CNTR

FI_READ

Put
CNTR

FI_WRITE

Get
CNTR

FI_READ

Thread 0 Thread 1 Thread 2

SHAREABLE TRANSMIT CONTEXT MANAGEMENT

 STX allocator controls
assignment of STX to contexts
• STXs are in shared, private, or free state
• Default context is created first and claims

0th STX as shared

 Private contexts
• Check TID-to-STX table for given thread
• If no STX, attempt to allocate a private

STX to the calling thread
• If none available, treat as shared

 Shared contexts
• Allocate according to policy: round-robin,

random, least used, etc.
• Set low water mark to favor private usage

or disable private to favor sharing

11

CPU (8-cores)

HF
I

0

0

2

0

1

1

1

Thread to STX
Mapping Table

Thread
0

Thread
1

Thread
2

Thread
3

Thread
4

Thread
5

Thread
6

Thread
7

Private
context

Default
Context
(shared)

Reference
CountTID STX

1 1

3 2

5 4

HF
I

0

1

2

1

1

2

2Thread
0

Thread
1

Thread
2

Thread
3

Thread
0

Thread
1

Thread
2

Thread
3

STX PARTITIONING

 Multiple PEs per node
• Query maximum number of STX

and automatically partition
• Or manually Set maximum STX

per PE: SHMEM_OFI_STX_MAX

 OpenSHMEM threading
introduces new and
interesting resource
management challenges
• Exposes threads to middleware

enabling optimizations
• Good solutions critical for

realizing full performance
potential

12

CPU (8 cores)

PE
 0

PE
 1

Private
context(s)Shared

contexts

Private
context(s)Shared

contexts

BLOCKING PUT BANDWIDTH

 Early results subject to change
 Multithreaded point-to-point

unidirectional bandwidth test
• Each thread has a separate context

 Two nodes, 1 PE per node:
• Dual socket Intel® Xeon® CPU E5-

2699 v3 (Haswell) 2.30GHz
• 18 cores, 36 threads

• Intel® Omni-Path Architecture
• Nodes connected via single switch
• 64 GB RAM
• Libfabric v1.6.0, PSM2 provider
• CentOS* Linux release 7.3.1611

 Sandia OpenSHMEM v1.4.1rc1
• Manual progress and thread

completion support enabled

13 OpenFabrics Alliance Workshop 2018

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and
"Meltdown." Implementation of these updates may make these results inapplicable to your device or system. Software and workloads used in performance tests may have
been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit http://www.intel.com/performance. Copyright © 2018, Intel Corporation. *Other names and brands may be claimed as the property of others.

~12.5 GB/s

http://www.intel.com/performance

COMPARISON OF STX ALLOCATION POLICIES

14 OpenFabrics Alliance Workshop 2018

Shared STXPrivate STX

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and
"Meltdown." Implementation of these updates may make these results inapplicable to your device or system. Software and workloads used in performance tests may have
been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit http://www.intel.com/performance. Copyright © 2018, Intel Corporation. *Other names and brands may be claimed as the property of others.

 Experiment: 8 threads per PE, increase STX from 1 to 8
• Always at least one shared STX (default context); how we assign the rest?
• E.g., Private @2 STX, 1 private, 7 threads 1 STX. Shared @2 STX, 8 threads share 2 STX.

 Application usage model determines best method for using available resources

http://www.intel.com/performance

14th ANNUAL WORKSHOP 2018

THANK YOU
James Dinan

Intel Corporation

	OpenSHMEM and OFI: Better Together
	Notices and Disclaimers
	What is OpenSHMEM?
	OpenSHMEM 1.4
	OpenSHMEM 1.4 Thread Safety
	OpenSHMEM Contexts: Isolation and Overlap
	OpenSHMEM 1.4 Contexts API
	Contexts and Threads Example
	SOS 1.4.x OFI Transport Architecture
	Thread-Aware Resource Privatization
	Shareable Transmit Context Management
	STX Partitioning
	Blocking Put Bandwidth
	Comparison of STX Allocation Policies
	THANK YOU

