
14th ANNUAL WORKSHOP 2018

HOT UNPLUG SUPPORT FOR RDMA DEVICES
Matan Barak, SW Architect

[April, 2018]
Mellanox Technologies LTD.

AGENDA

 Introduction
• Hot plug and unplug events
• What is wrong with today’s mechanism?
• Solution components
 Notifications for hot plug/unplug events
 Device list changes dynamically
 User-space interaction

• Refreshing device list
• Hot unplug on an opened device
 Disassociate context
 Latest changes in user-space libs
 Challenges

• ioctl() based commands
• Emulating completions
• librdmacm

2 OpenFabrics Alliance Workshop 2018

HOT PLUG AND UNPLUG EVENTS

 Hot plug/unplug events
• Physically inserting/removing a PCI device
• Hot plug/unplug a device to a VM
• Add/Remove an IB device driver
• Hardware receives a fatal event

 Dealing currently with hot-unplug
• Application gets an IB_EVENT_DEVICE_FATAL in its async event channel fd
• Application tries to close all resources

• It gets a –EIO error from the kernel Resource leak
• Closing the context
• No completion events, QP is getting full or failing with immediate errors.
• Rdma-cm sends RDMA_CM_EVENT_DEVICE_REMOVAL on all opened IDs

 Dealing currently with hot-plug
• User-space doesn’t have a well-established way to get this event

• If it had, It should have re-scanned all IB devices

3 OpenFabrics Alliance Workshop 2018

SOLUTION COMPONENTS

4 OpenFabrics Alliance Workshop 2018

KernelIOCTL
parsing

Disassociate
context

Notify hot
plug/unplug

libibverbs

Provider Driver
Emulating

completions
Uninit
Device

Device list Reference
count

librdmacmDevice list

= Implemented (*) In production in one of the biggest clouds

NOTIFY FOR DEVICE CHANGES

 Why do we need to be notified?
• Need to know that a device we’re currently working on is dying.
• A better device was plugged and we want to move to the new device.
• We might want to use another device in the future.
• Moving a device between VMs according to the overload [MSFT]

 Notifications mechanism
• Application has an active context on a device

• It gets an IB_EVENT_DEVICE_FATAL in its async event channel fd
• No active context on a device

• Currently no mechanism is implemented, several possibilities:
• Filtering events from netlink socket on NETLINK_KOBJECT_UEVENT group
• Filtering udev events via libudev
• INotify (filesystem) events (“create” + “delete” on ‘/dev/infiniband)
• New libibverbs (uverbs) fd channel – maybe part of librdmacm?

5 OpenFabrics Alliance Workshop 2018

DEVICE LIST

 Opening an IB device requires scanning the list of devices
 libibverbs scans the device list via sysfs when ibv_get_device_list()

is called
 A device is then chosen either by matching its name or GUID
 librdmacm scans the device list only when it initializes.
 New in 2017: Subsequent calls to ibv_get_device_list() refresh the

list by adding new devices and deleting plugged out devices.
• Scanning is done by name and file’s timestamp.

Unfortunately, new devices could be plugged and old devices
could be unplugged. This could happen even when a context is
opened on the device!

6 OpenFabrics Alliance Workshop 2018

Device 1 Device 2 Device 3 Device 4

List may not be static over-time!

REFRESHING THE DEVICE LIST

Call ibv_get_device_list() to refresh device list

Wait on the fd until HOT_PLUG/HOT_UNPLUG event arrives

Get pending events by calling
ibv_get_sys_event(struct ibv_sys_event* event, size_t sz)

Keep pooling for events until –EAGAIN (no events exist)

Application uses libibverbs new notification event fd channel (or a generic netlink
socket layer) by calling ibv_open_sys_event_channel()

It’s recommended to change the event channel to non-blocking mode.

7 OpenFabrics Alliance Workshop 2018

HOT UNPLUG ON AN OPENED DEVICE

Close the context with ibv_close_device()

Application closes all its resources

Destroy resources should succeed
(but currently it’ll return –EIO)

Trying to create/modify/query a resource
will result in an error code from the kernel

Application gets an IBV_EVENT_DEVICE_FATAL on the async FD

8 OpenFabrics Alliance Workshop 2018

Kernel has disassociated the context and destroyed all objects

User-space Kernel

DISASSOCIATE CONTEXT

 The device driver notifies that it’s being unloaded or unplugged.
 The kernel destroys all IB objects and currently their handles

part in the kernel (ib_uobject).
 If the user polled the async event fd, it’s being woken up.
 Calling the kernel result in –EIO for every command.

Problems
 Only mlx4 and mlx5 based devices implements disassociate

context.
 The kernel destroys all its user-space object handles

(ib_uobject) and returns a failure for every command, rather
than keeping these handles and successfully destroying them in
DESTROY_XXXX verbs.

9 OpenFabrics Alliance Workshop 2018

ib_uobject ib_object
(i.e. ib_pd)User_handle

LATEST CHANGES IN USER-SPACE LIBS

 ibv_get_device_list() creates a new ibv_device list of the
current snapshot
• Re-read the sysfs
• Finds matching drivers
• Creates new verbs_devices and removes unplugged ones
 Add an “uninit_device()” to libibverbsprovider driver

interface. After this function returns, no more references to
verbs_device(s) are allowed.
• The provider should free any memory it allocated for the verbs_device in this call.
 Verbs_device will encompass refcnt

• Increased by ibv_get_device_list()/ibv_open_device()
• Decreased by ibv_close_device()/ibv_free_device_list()

• libibverbs frees verbs_device (calling uninit_device()) when the refcnt is down to
zero.

 Unplug requires the application to close all IB resources on the
ibv_context.
 We still lack an event to update the device list.

10 OpenFabrics Alliance Workshop 2018

CHALLENGES – IOCTL() BASED COMMANDS

Problem
 Each kernel provider driver could have its own objects, methods and

attributes, without affecting the common code.
 Implemented by passing provider specific information and

function pointers to the generic parser.
 In hot unplug, we unload the driver with all this information.

Possible solution
 We observe that parsing and dispatching is part of the infrastructure.
 Dynamically allocate parsing tree (parsing guidelines) by infrastructure.
 No provider specific destroy methods.

• When driver is unloaded, destroy all actual IB objects (QP, CQ, etc), but keep the
kernel user-space representation (ib_uobject).

 When getting a destroy call, only release the user-space representation in a
generic way.

 All other methods should return an error as the parsing tree doesn’t exist.

11 OpenFabrics Alliance Workshop 2018

EMULATING COMPLETIONS
Problem
 When an active device is hot unplugged, there might be some work requests

that weren’t processed.
 While not mandatory by IBTA specification, ideally application should get an

IBV_WC_WR_FLUSH_ERR completion for each post WR.
 Emulating completions in kernel requires kernel driver to be resident (provider

user-space driver interacts with its kernel counterpart directly).

Possible solution
Driver specific solution – for example:
 Kernel write a “DEVICE_UNPLUG” bit in the CQ and wakes up associated event fds.
 Provider driver delegate the problem to the user-space driver and detaches.
 When the user polls the CQ, this bit is being polled too.

• If this bit is set, poll_cq returns a IBV_WC_WR_FLUSH_ERR completion after the CQ is
empty of real completions.

• Need to know how many completions you should emulate.
 Newly posted WR could either fail immediately or create new

IBV_WC_WR_FLUSH_ERR completions.

12 OpenFabrics Alliance Workshop 2018

LIBRDMACM

 RDMA-CM (librdmacm) needs some extra work to support hot
plug and unplug.
• Maintains a single device list at startup.
• Need to listen to HOT_PLUG and HOT_UNPLUG events and refresh its device list.

13 OpenFabrics Alliance Workshop 2018

14th ANNUAL WORKSHOP 2018

THANK YOU
Matan Barak, SW Architect
Mellanox Technologies LTD.

	HOT UNPLUG support for rdma devices
	Agenda
	Hot plug and unplug events
	Solution components
	Notify for device changes
	Device list
	Refreshing the device list
	Hot unplug on an opened device
	Disassociate context
	Latest changes in user-space libs
	Challenges – IOCTl() based commands
	Emulating completions
	librdmacm
	THANK YOU

