
14th ANNUAL WORKSHOP 2018

VERBS COUNTERS
Jason Gunthorpe , Alex Rosenbaum, Guy Shattah

April 2018

VERBS COUNTERS

Programmatic access to high speed
hardware counters

RFC:

https://www.spinics.net/lists/linux-rdma/msg58579.html

https://www.spinics.net/lists/linux-rdma/msg58579.html

MOTIVATION

To-date RDMA provides only counters at the whole port
level
Verbs counters provide a way to count per-object

information, with full HW offload

Observe behavior details of a single connection without
requiring CPU involvement in each packet
Programmatic control allows process to manage counting

as desired

MOTIVIATION #2

RDMA Debug-ability
 Connect counters to objects in another process (Long term goal)
 Application self-debug details of the RDMA protocol hidden to the

application (re-transmits, packet loss, NACKs, etc)

Flow Processing
 Passively monitor traffic flows, eg monitor networking on a per-VM basis
 DPDK

Self-Monitoring
 Compute actual instant bandwidth utilization

OVERVIEW

Counters objects hold a set of counter slots
Each slot can be assigned to a 'sample point'
API to read the counter value from all slots in a
counter object

API

Basic counter object creation:

struct ibv_counters *ibv_create_counters(struct ibv_context *context,
struct ibv_counters_init_attr *init_attr);

int ibv_destroy_counters(struct ibv_counters *counters);

SAMPLE POINTS

Standard verbs sample points are intended to be
very well defined
Easy to define hardware specific sampling points
via a DV API
Starting out with simple packet and octet counters

API

enum ibv_counter_description {
IBV_COUNTER_PACKETS,
IBV_COUNTER_BYTES,

struct ibv_counter_attach_attr {
enum ibv_counter_description counter_desc;
uint32_t index;

};

int ibv_attach_counters_point_flow(struct ibv_counters *counters,
struct ibv_counter_attach_attr *attr,
struct ibv_flow *flow);

READING COUNTERS

Expecting implementations to require a kernel syscall
Return all counter values at once
Approximate values or more expensive retrieval
Simple monotonic and non-saturating uint64_t values
HW not required to return an 'atomic snapshot'

API

Flags:
IBV_READ_COUNTERS_ATTR_PREFER_CACHED

int ibv_read_counters(struct ibv_counters *counters, size_t ncounters,
uint64_t counters_value[], int attr_flags);

LIMITATIONS

The API allows a wide range of combinations that hardware
may not support:
 Combinations of sampling points in one object, eg can not sample two

flow objects at once
 Sampling types against objects, eg may support octet for flow but not for

QP
 HW may not be able to attach/detach after object creation

App can detect this via the EOPNOTSUPP/EINVAL return
code during setup.

FUTURE DIRECTIONS

Monitor other IB objects, such as MR's CQs, SQs,
etc.
More standardized verbs counters

14th ANNUAL WORKSHOP 2018

THANK YOU
Jason Gunthorpe, Sr. Principal Engineer

Mellanox

	Verbs Counters
	Verbs Counters
	Motivation
	Motiviation #2
	Overview
	API
	Sample Points
	API
	Reading Counters
	API
	Limitations
	Future Directions
	THANK YOU

