

14th ANNUAL WORKSHOP 2018 A NEW APPROACH TO SWITCHING NETWORK IMPLEMENTATION

Harold E. Cook Director of Software Engineering Lightfleet Corporation

Lightfleet.

April 9, 2018

OBJECTIVES

- Discuss efficiency and reliability issues in routable networks due to packet structures and software required to move them through the fabric
- Present a new approach which overcomes issues in typical software based routing and delivers new levels of performance and flexibility

PACKET STRUCTURES

In general, routable network packets consist of:

- Control information
 - 1 or more packet headers depending on protocols
 - Verification information (checksums)
- Data or payload

PACKET SWITCHING

- Switches use software stacks to examine control information to determine packet routing
 - In many cases, Software based table lookups
 - Overhead varies depending upon
 - Packet type
 - Unicast, Multicast or Broadcast
 - Pass-through mode of the switch
 - Store-and-forward or Cut-through

PACKET SWITCHING SPECIAL CASE: MULTICAST

- Multicast packets are especially onerous
- Generally need to be replicated on a subset of the available ports – serial retransmission to each port
- Skew and jitter in transit times from first port to last port
- Creates opportunity for congestion in the network that will result in dropped packets in switches under load

MULTICAST SKEW AND JITTER

CONGESTION AND PACKET LOSS

- Congestion and packet loss is reality in software oriented switches
- Lost/dropped packets must be detected in protocol software stacks
 - Recovery incurs additional overhead

NETWORK SECURITY

 Software Stack based switches are vulnerable to cyber attacks, including:

- Denial of Service
- Malicious code attacks targeted at the processors in switches, e.g., Spectre and Meltdown
- Spoofed protocol packets or "man in the middle"
- Others...

ROUTABLE NETWORK SUMMARY

- Packets carry everything necessary to be routed to their destination
- Packets examined by every switch along the way to determine where the packet is going
 - Software table look-up latency
 - Multicast poorly handled in switch software

A NEW APPROACH

A NEW APPROACH

SWITCHLESS NETWORKING

Use a protocol to enable hardware routing and eliminate the software overhead from the switch

SHIFT IN NETWORKING PARADIGM

Move from:

- Packets carry everything necessary for the network to "figure out" where the packet goes
 - Requires significant software overhead
 - Network switching and routing software
 - ➢OS based network stack

■ To:

 The application defines its needs (i.e. groups) and the network adapts to fulfill these needs

FOR YOUR CONSIDERATION

- Many applications involve a set of hosts, working together in a bounded environment to provide services
- In this type of environment why tolerate:
 - Throughput penalty of generalized network protocol(s), and
 - The software overhead that is required to support them

EXAMPLES

- Supercomputers, HPC clusters, Big Data Analytics clusters, etc.
- Multi-host applications which run long periods
 - e.g. market analysis/trading, billing, inventory systems, microservice environments, etc.
- Storage networks
 - Front side or back end of large storage arrays
 - NVMe fabrics

THE ALTERNATIVE

- A connectionoriented protocol
- Deterministic packet routing at hardware speeds
- Reliable data transmission
 - Zero Lost Packets
- Hardware flow control

THE ALTERNATIVE

Everything is inherently multicast

- No skew in end point arrival time
- Unicast is simplified multicast case

THE ALTERNATIVE

- Kernel bypass architecture
- User space memory transfers
- Supports standard
 APIs and frameworks

CONNECTION-ORIENTED PROTOCOL

- Application defines "groups" of one or more servers that receive data
 - Data written to the group is transferred to all members of the group
 - Groups are dynamic
 - Nodes enter & leave as needed

PACKET ROUTING AT HARDWARE SPEEDS

- Packet routing determined by group identifier
- Lookup is done in hardware not software
 - Latency greatly reduced!

LIGHTFLEET PACKET

EVERYTHING IS INHERENTLY MULTICAST

Data moved to all exit ports simultaneously

- No skew and no jitter!
 - Critically important in time sensitive applications
- True multicast was lost in the transition from bus based networks to star topologies
 - Ongoing research & investigation into applications and benefits of Multicast.
 - Examples:
 - ≻ "High Performance Multicast", AFRL, 2012, Birman, et al
 - "Building Smart memories and Cloud Services with Derecho", Sagar Jha, et al, Cornell University

RECALL THIS SLIDE FROM EARLIER

SKEW-LESS AND JITTER-LESS MULTICAST

Multicast with no skew, no jitter and 12x faster*

*SOURCE: Tolly Report #216157, Nov. 2016

KERNEL BYPASS ARCHITECTURE

Improved latency and throughput

- No kernel or network stack overhead
- User space to user space transfers
 - Zero copy
- Kernel drivers are used to initialize hardware and manage group subscription tables

API AND FRAMEWORK SUPPORT

• OFED, LibFabric, Verbs

- MPI and other Clustering
- Netty
 - Big Data Analytics & JAVA environments

Aeron, 29West, Informatica, Derecho

Messaging based applications

Network emulation (i.e. Ethernet)

Access standard networking interfaces

PERSISTENT MEMORY

- Highest and best use cases for persistent memory are:
 - Expanded front side memory bus architecture for local access such as Gen-Z, etc.
 - Lowest Latency, highest throughput reliable network for NVMeoF

NETWORK SECURITY

- Hardware implementation means that there are no processors to attack
- All data is encapsulated by hardware, there is no point at which a protocol packets or headers can be spoofed
 - No "man in the middle" opportunities
- Denial of service not possible due to flow control implementation.

CONCLUSION

- By enabling hardware routing with a new protocol and eliminating software overhead, networking becomes:
 - ✓ Faster
 - ✓Simpler
 - More reliable and secure

14th ANNUAL WORKSHOP 2018

THANK YOU Harold E. Cook hcook@Lightfleet.com http://www.Lightfleet.com

Lightfleet.