
OpenFabrics Alliance Workshop 2016

OBJECTIVE (TODAY)

§  Describe what we’re trying to accomplish, and its rationale

§  Describe the approach being taken

§  Ask for your feedback/direction check - Is this an acceptable
direction that merits further development?

1	

12th ANNUAL WORKSHOP 2016

Pathfinding a Kernel
Storage Fabric

Mid-layer

April 2016
Scott Atchley, Stan Smith, Paul Grun

OpenFabrics Alliance Workshop 2016

§  Kernel fabric clients (ULPs) require a fabric device specific
bottom edge in order to interface with kernel fabric devices

§  Each ULP is forced to define a fabric transport abstraction layer
and then meld the fabric device specific behavior into their
fabric transport abstraction; often 8+ months of development
work
Case in point:

•  LNET is the fabric transport abstraction
•  A Lustre Network Driver (LND) is required for each supported fabric:

LNDs for IB/iWARP, Cray GNI, ksockets, non-QP based devices…

§  NVMe over Fabrics (NVMe/F), NFS/RDMA, iSER/SRP have the
same ULP-to-fabric device I/F issues as Lustre in order to
support new interconnects

Kernel Fabric Observations

3	

OpenFabrics Alliance Workshop 2016

Current Lustre LND Architecture

4	

Vendor	

Driver

Vendor	

Driver

OFED o 2 iblnd

LNet Vendor	

Driver

Vendor	

Driver

Vendor	

Driver

Vendor	

Driver

socklnd Ethernet

gnilnd

Vendor	

Driver

Vendor	

Driver

Supported	
 by	
 Lustre	
 Community
Supported	
 by	
 HW	
 Vendors
Supported	
 by	
 OpenFabrics	
 Community

OpenFabrics Alliance Workshop 2016

§  Reduction in storage ULP fabric device I/F development time for new fabric
devices is desirable

§  Multiple storage ULPs could utilize a common fabric mid-layer

§  A storage fabric mid-layer would be RMA device agnostic in order to
support current and future RMA devices
•  Not all fabric devices are Queue-Pair based
•  Support diverse fabrics w/o requiring emulation of an existing fabric (i.e not wire compatible)

§  Fabric mid-layer would present a consumer-oriented message transfer

abstraction
•  Minimize device specific special cases above message transfer layer

§  Support emerging fabric use cases – NVMe for remote storage (NVMe/F)

•  NVMe is PCIe slot and device [0…255] limited
•  NVMe/F gains access to ‘more’ NVMe resources at ‘near local’ speeds
•  Sharing NVMe data over the fabric
•  Data replication / Mirroring using RMA (multicast+) especially for NVDIMMs
•  All RMA writes must reach a durability point before signaling completion

5	

Pathfinding Conclusions

OpenFabrics Alliance Workshop 2016

Hold on, it’s not a QP device…

6	

OpenFabrics Alliance Workshop 2016

§  Kernel storage ULP I/F requirements drive fabric mid-layer
messaging API design
• File systems, object I/O, block storage, persistent memory (emerging)

§  Fabric agnostic

• Support for new fabrics should not require emulating an existing one
•  Device drivers are typically based on a specific fabric technology

§  Support for emerging fabrics…
• Allow for innovation from new fabrics as they emerge

§ While still supporting existing networks

• Must be able to support existing network technologies

Fabric Mid-layer Objectives

7	

OpenFabrics Alliance Workshop 2016

§ kfabric: an abstract, kernel mode API for storage
• API is expressed in terms of message passing operations, not fabric

device protocols (e.g. ‘write message’ vs ‘post send request’)
• Fabric provider does address resolution in consumer-provider agreed

upon address format

§ Emerging NVMe/F technology can benefit from a transport
neutral, RMA-enabled fabric mid-layer

§ kfabric designed in ‘spirit’ around libfabric concepts
• RMA device agnostic (consider SCSI mid-layer common code design)
• Reduce/Simplify ULP fabric device specific I/F code

•  Device specifics contained in the provider module, not in ULP
•  NVMe/F and Lustre LND fabric I/F implementations reap benefits

(code reduction/simplification) from kfabric mid-layer

kfabric Mid-layer Proposal

Demand	
 exists	
 for	
 an	
 abstract,	
 fabric	
 mid-­‐layer	
 API	
 based	
 on	
 RMA	

8	

OpenFabrics Alliance Workshop 2016

kfabric Mid-layer Stack

9	

OpenFabrics Alliance Workshop 2016

kfabric Mid-layer Framework

kfabric	
 API	

kfabric	
 API	

Device	
 Drivers	

kfabric	
 Providers	

New	
 Providers**	

New	
 Devices	

Kernel	
 Verbs	

iWarp	
 InfiniBand	
 RoCE	

Verbs	
 Provider	

NIC	

Kernel	
 Sockets	

Sockets	
 Provider	

Red = new kernel components, ** = e.g. NVM
10	

OpenFabrics Alliance Workshop 2016

kfabric API

kfabric consumer API module (exports)
•  fi_getinfo() fi_fabric() fi_domain() fi_endpoint() fi_cq_open() fi_ep_bind()
•  fi_listen() fi_accept() fi_connect() fi_send() fi_recv() fi_read() fi_write()
•  fi_mr_reg/v() fi_cq_read() fi_cq_sread() fi_eq_read() fi_eq_sread() fi_close() …

kfabric Provider APIs
•  Each fabric device type is implemented as a kfabric device provider module.

•  kfi_provider_register()
During kfabric provider module load, a call to kfi_provider_register() supplies the
kgabric API with dispatch vectors for fi_* calls to the provider specific routines.

•  kfi_provider_deregister()
During kfabric provider module unload, kfi_provider_deregister() destroys the fi_*
runtime linkage for the specific provider (ref counted).

kfabric API

11	

OpenFabrics Alliance Workshop 2016

§  Reliable sockets is a byte streaming interface
•  Semantics do not map well to messaging operations (i.e. msg markers required)

•  kfabric complements sockets by providing a reliable message service
•  And sockets does not scale well in time or space

•  Polling connections for progress or memory consumption per connection

§  Kernel verbs is a low-level device driver I/F
•  Not just an complicated interface, but also wire protocols (IB, RoCE, iWarp)
•  Lacking stronger completion semantics (i.e. data resides within a persistence domain)
•  kfabric is expected to call kverbs for certain networks

§  An RMA device agnostic fabric mid-layer does not exist today

Why a Kernel Storage Fabric Mid-Layer

The	
 semanZcs	
 desired	
 by	
 current	
 and	
 emerging	
 storage	

applicaZons	
 are	
 not	
 completely	
 addressed	
 by	
 current	
 APIs	

12	

OpenFabrics Alliance Workshop 2016

§  Block and object storage protocols map well to reliable message-based
APIs that provide RMA services

§  kfabric provides reliable and unreliable message services
•  Fabric clients do not need to maintain message markers

§  kfabric does not require implicit buffering

§  kfabric completion semantics are a semantic match with storage
requirements
•  e.g. Completions: local, remote, persistent, ordered and out-of-order data delivery…

§  kfabric endpoints are thread-safe (when requested)
•  Multiple threads can make forward progress independently
•  Serialization can be done by the provider, not by the application/ULP

§  kfabric provides one-sided semantics enabling hardware Remote
Memory Access without remote CPU intervention

Why a Kernel Storage Fabric Mid-Layer 2

13	

OpenFabrics Alliance Workshop 2016

Current Lustre LND Architecture

14	

Vendor	

Driver

Vendor	

Driver

OFED o 2 iblnd

LNet Vendor	

Driver

Vendor	

Driver

Vendor	

Driver

Vendor	

Driver

socklnd Ethernet

gnilnd

Vendor	

Driver

Vendor	

Driver

Supported	
 by	
 Lustre	
 Community
Supported	
 by	
 HW	
 Vendors
Supported	
 by	
 OpenFabrics	
 Community

OpenFabrics Alliance Workshop 2016

Vendor	

Driver

Vendor	

DriverProviderkFabricLNet

sock	

Provider

gni	

Provider

Supported	
 by	
 Lustre	
 Community
Supported	
 by	
 HW	
 Vendors
Supported	
 by	
 OpenFabrics	
 Community

verbs	

Provider

Future Lustre LND Architecture

15	

12th ANNUAL WORKSHOP 2016

THANK YOU

OFIWG – DS/DA

