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OBJECTIVE (TODAY) 

§  Describe what we’re trying to accomplish, and its rationale 
 
§  Describe the approach being taken 

§  Ask for your feedback/direction check - Is this an acceptable 
direction that merits further development? 
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§  Kernel fabric clients (ULPs) require a fabric device specific 
bottom edge in order to interface with kernel fabric devices 
 

§  Each ULP is forced to define a fabric transport abstraction layer  
and then meld the fabric device specific behavior into their 
fabric transport abstraction; often 8+ months of development 
work 
Case in point: 

•  LNET is the fabric transport abstraction 
•  A Lustre Network Driver (LND) is required for each supported fabric: 

LNDs for IB/iWARP, Cray GNI, ksockets, non-QP based devices… 

§  NVMe over Fabrics (NVMe/F), NFS/RDMA, iSER/SRP have the 
same ULP-to-fabric device I/F issues as Lustre in order to 
support new interconnects 

Kernel Fabric Observations 
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Current Lustre LND Architecture 
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§  Reduction in storage ULP fabric device I/F development time for new fabric 
devices is desirable 
 

§  Multiple storage ULPs could utilize a common fabric mid-layer 
 

§  A storage fabric mid-layer would be RMA device agnostic in order to 
support current and future RMA devices 
•  Not all fabric devices are Queue-Pair based 
•  Support diverse fabrics w/o requiring emulation of an existing fabric (i.e not wire compatible) 

 
§  Fabric mid-layer would present a consumer-oriented message transfer 

abstraction 
•  Minimize device specific special cases above message transfer layer 

 
§  Support emerging fabric use cases – NVMe for remote storage (NVMe/F) 

•  NVMe is PCIe slot and device [0…255] limited 
•  NVMe/F gains access to ‘more’ NVMe resources at ‘near local’ speeds 
•  Sharing NVMe data over the fabric 
•  Data replication / Mirroring using RMA (multicast+) especially for NVDIMMs 
•  All RMA writes must reach a durability point before signaling completion 
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Hold on, it’s not a QP device… 
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§  Kernel storage ULP I/F requirements drive fabric mid-layer 
messaging API design 
• File systems, object I/O, block storage, persistent memory (emerging) 

 
§  Fabric agnostic 

• Support for new fabrics should not require emulating an existing one 
•  Device drivers are typically based on a specific fabric technology 

 

§  Support for emerging fabrics… 
• Allow for innovation from new fabrics as they emerge 

 
§ While still supporting existing networks 

• Must be able to support existing network technologies 

Fabric Mid-layer Objectives 
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§ kfabric: an abstract, kernel mode API for storage 
• API is expressed in terms of  message passing operations, not fabric 

device protocols (e.g. ‘write message’ vs ‘post send request’) 
• Fabric provider does address resolution in consumer-provider agreed 

upon address format 
 

§ Emerging NVMe/F technology can benefit from a transport 
neutral, RMA-enabled fabric mid-layer 
 

§ kfabric designed in ‘spirit’ around libfabric concepts 
• RMA device agnostic (consider SCSI mid-layer common code design) 
• Reduce/Simplify ULP fabric device specific I/F code 

•  Device specifics contained in the provider module, not in ULP 
•  NVMe/F and Lustre LND fabric I/F implementations reap benefits 

(code reduction/simplification) from kfabric mid-layer 

kfabric Mid-layer Proposal 

Demand	
  exists	
  for	
  an	
  abstract,	
  fabric	
  mid-­‐layer	
  API	
  based	
  on	
  RMA	
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kfabric Mid-layer Stack 
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kfabric Mid-layer Framework 
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kfabric API 
 
kfabric consumer API module (exports) 
•  fi_getinfo()  fi_fabric()  fi_domain()  fi_endpoint() fi_cq_open() fi_ep_bind() 
•  fi_listen() fi_accept() fi_connect() fi_send()  fi_recv() fi_read() fi_write() 
•  fi_mr_reg/v() fi_cq_read() fi_cq_sread() fi_eq_read() fi_eq_sread() fi_close()  … 

 
 
 

 
kfabric Provider APIs 
•  Each fabric device type is implemented as a kfabric device provider module. 

•  kfi_provider_register() 
During kfabric provider module load, a call to kfi_provider_register() supplies the 
kgabric API with dispatch vectors for fi_* calls to the provider specific routines. 
 

•  kfi_provider_deregister() 
During kfabric provider module unload, kfi_provider_deregister() destroys the fi_* 
runtime linkage for the specific provider (ref counted). 

kfabric API 
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§  Reliable sockets is a byte streaming interface 
•  Semantics do not map well to messaging operations (i.e. msg markers required) 

•  kfabric complements sockets by providing a reliable message service 
•  And sockets does not scale well in time or space 

•  Polling connections for progress or memory consumption per connection 

§  Kernel verbs is a low-level device driver I/F 
•  Not just an complicated interface, but also wire protocols (IB, RoCE, iWarp) 
•  Lacking stronger completion semantics (i.e. data resides within a persistence domain) 
•  kfabric is expected to call kverbs for certain networks 

 
§  An RMA device agnostic fabric mid-layer does not exist today 

Why a Kernel Storage Fabric Mid-Layer 

The	
  semanZcs	
  desired	
  by	
  current	
  and	
  emerging	
  storage	
  
applicaZons	
  are	
  not	
  completely	
  addressed	
  by	
  current	
  APIs	
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§  Block and object storage protocols map well to reliable message-based 
APIs that provide RMA services 
 

§  kfabric provides reliable and unreliable message services 
•  Fabric clients do not need to maintain message markers 

 

§  kfabric does not require implicit buffering 
 

§  kfabric completion semantics are a semantic match with storage 
requirements 
•  e.g. Completions: local, remote, persistent, ordered and out-of-order data delivery… 

 

§  kfabric endpoints are thread-safe (when requested) 
•  Multiple threads can make forward progress independently 
•  Serialization can be done by the provider, not by the application/ULP 

 

§  kfabric provides one-sided semantics enabling hardware Remote 
Memory Access without remote CPU intervention 

 

Why a Kernel Storage Fabric Mid-Layer 2 
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Current Lustre LND Architecture 
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THANK YOU 

OFIWG – DS/DA 
 


