
12th ANNUAL WORKSHOP 2016

USER MODE ETHERNET VERBS
Tzahi Oved

Mellanox Technologies
[April , 2016]

OpenFabrics Alliance Workshop 2016

AGENDA

§  Introduction
§  Current status – The RAW ETH QP
§  Receive Side Scaling
§  L2 Tunneling stateless offloads
§  Capturing
§  Completion Queue – Support New Extensions
§  User Mode Non-Privileged Access
§  Conclusion

2	

OpenFabrics Alliance Workshop 2016

INTRODUCTION

§  Telecom, Web 2.0, Cloud & FSI high-end applications increase
network requirements

§ Would like to reduce operating systems overhead
•  Data path direct User application to HW access APIs
•  Get high PPS rates, low latency, minimize cycle/byte and increased scalability

§  Transparently use standard TCP/UDP/IP protocols
•  No need for proprietary protocol designs
•  Use existing rich HW protocol offload support
•  Can interoperate with traditional OS TCP/IP stack

OpenFabrics Alliance Workshop 2016

CURRENT STATUS – THE RAW ETH QP

§  Ibv_qp type: RAW_ETH
§  Use mature verbs objects

•  QP, CQ, MR

§  Pair of send and receive
queues
•  Send queue to transmit raw packets -

No implicit headers
•  Receive queue is steered according

to flows classification

§  Stateless Offloads Engine
•  Currently csum offload is supported
•  And Interrupt moderation (CQ

moderation)

§  Require privileged user
•  CAP_NET_RAW

4	 www.openfabrics.org	

Applica4on	

net_dev	
mlx_en	

TCP/IP	 Kernel	
Stack	

uVerbs	

mlx_ib	

User	 Mode	
Stack	 /	 DPDK	

Ib_core	

Sockets	

Ethernet	 Stateless	 Offloads	 Engine	

NIC	

U	

K	

RAW	
“QP”	

RAW	
QP	

Send/Recv	
Ethernet	
frames	

Verbs	 objects:	 QP,	
CQ,	 Mem	 regs	

Transmit	
Flow	
Tables	

Receive	
Flow	
Tables	

OpenFabrics Alliance Workshop 2016

RSS

§  Receive Side Scaling (RSS) technology
enables spreading incoming traffic to
multiple receive queues

§  Each receive queue is associated with a
completion queue

§  Completion Queues (CQ) are bound to a
CPU core
•  CQ is associated with interrupt vector and thus with CPU

•  For polling, user may run polling for each CQ from
associated CPU

•  In NUMA systems, CQ may be allocated on close
memory to associated CPU

§  Spreading the receive queues to different
CPU cores allows spreading receive
workload of incoming traffic

Introduction

5	

RSS	 Hash	

Ingress	 Traffic	

RQ#0	

.	 .	 .	
CQ#0	

RQ#1	

CQ#1	

RQ#N	

CQ#N	

RQ	

CQ	

Ingress	 Traffic	

OpenFabrics Alliance Workshop 2016

RSS

Classify first, distribute after

§  Begin with classification
•  Using Steering (ibv_create_flow()) classify incoming traffic
•  Classification rules may be any of the packet L2/3/4 header attributes

•  e.g. TCP/UDP only traffic, IPv4 only traffic, ..
•  Classification result is transport object - QP

§  Continue with spreading
•  Transport object (QPs) are responsible for spreading to the receive queues
•  QPs carry RSS spreading rules and receive queue indirection table

§  RQs are associated with CQ
•  CQs are associated with CPU core

§  Different traffic types can be subject to different spreading

Flow Overview

OpenFabrics Alliance Workshop 2016

RSS

§  Typically QPs (Queued Pairs) are created with
3 elements
•  Transmit and receive Transport
•  Receive Queue

•  Exception is QPs which are associated with SRQ
•  Send Queue

§  Extend verbs to support separate allocation of
the above 3 elements
•  Transport – ibv_qp with no RQ or SQ

•  Ibv_qp_type of IBV_QPT_RAW_ETH
•  Next will be UD QP type

•  New QP attribute: ibv_rx_hash_conf
• Work Queue – ibv_wq

•  Can be of 2 types: IBV_RQ – Receive Queue and IBV_SQ
•  We’ll start with IBV_RQ definition

Work Queue (WQ)

QP	

Transport	

Send	
WQ	

Recv	
WQ	

QP	

Transport	

Recv	
WQ	

Send	
WQ	

Recv	
WQ	

Send	
WQ	

Recv	
WQ	

Send	
WQ	

OpenFabrics Alliance Workshop 2016

RSS

§  Work Queues of type Receive Queue (IBV_RQ) may share receive pull
•  By associating many Work Queues to same Shared Receive Queue (the existing verbs ibv_srq

object)

§  QP (ibv_qp) can be created without internal Send and Receive Queues and
associated with external Work Queue (ibv_wq)

§  QP can be associated with multiple Work Queues of type Receive Queue
•  Through Receive Queue Indirection Table object

Work Queue (WQ) – Cont.

struct ibv_wq {
 struct ibv_context *context;
 void *wq_context;
 uint32_t handle;
 struct ibv_pd *pd;
 struct ibv_cq *cq;
 /* SRQ handle if WQ is to be /
 associated with an SRQ, /
 otherwise NULL */
 struct ibv_srq *srq;
 uint32_t wq_num;
 enum ibv_wq_state state;
 enum ibv_wq_type wq_type;
 uint32_t comp_mask;

};

§  New object: Work Queue - ibv_wq
§  Managed through following new calls:

•  ibv_wq *ibv_create_wq(ibv_wq_init_attr)
•  ibv_modify_wq(ibv_wq , ibv_wq_attr)
•  ibv_destory_wq(ibv_wq)
•  ibv_post_wq_recv(ibv_wq, ibv_recv_wr)

§  Work Queues (ibv_wq) are associated
with Completion Queue (ibv_cq)
•  Multiple Work Queues may be mapped to same

Completion Queue (many to one)

OpenFabrics Alliance Workshop 2016

RSS
WQ of Type RQ – State Diagram

RDY ERR

CREATE_RQ

DESTRO
Y_RQ

MODIFY_RQ	
(RDY2RDY)

MODIFY_RQ	
(RDY2ERR)

SW
Transition

SW/HW
Transition

any	 state

RDY

RST

OpenFabrics Alliance Workshop 2016

RSS

§  New object: Receive Work Queue
Indirection Table –
ibv_rwq_ind_table

§ Managed through following new
calls:
•  ibv_wq_ind_tbl

*ibv_create_rwq_ind_table(ibv_rwq_ind_table_i
nit_attr)

•  ibv_modify_rwq_ind_table(ibv_rwq_ind_table)
•  ibv_query_rwq_ind_table(ibv_rwq_ind_tbl,

ibv_rwq_ind_table_attr)
•  ibv_destroy_rwq_ind_table(ibv_rwq_ind_tbl)

§ QPs may be associated with an RQ
Indirection Table

§ Multiple QPs may be associated
with same RQ Indirection Table

Receive Work Queue Indirection Table

struct ibv_rwq_ind_table {
 struct ibv_context *context;
 uint32_t handle;
 int ind_tbl_num;
 uint32_t comp_mask;

};

/*
 * Receive Work Queue Indirection Table
attributes
*/
struct ibv_rwq_ind_table_init_attr {

 uint32_t log_rwq_ind_tbl_size;
 struct ibv_wq **rwq_ind_tbl;
 uint32_t comp_mask;

};

/*
 * Receive Work Queue Indirection Table
attributes
*/
struct ibv_rwq_ind_table_attr {

 uint32_t attr_mask;
 uint32_t log_rwq_ind_tbl_size;
 struct ibv_wq **rwq_ind_tbl;
 uint32_t comp_mask;

};

OpenFabrics Alliance Workshop 2016

RSS

§  “RSS” QP
•  QP attributes (ibv_qp_attr) now include

RSS hash configuration attributes
(ibv_rx_hash_conf)

•  QP is Stateless
•  QP’s Send and Receive WQs parameters

are invalid - QP has no internal work
queues

•  Use ibv_post_wq_recv instead of
ibv_post_recv

•  QP is connected to RQ Indirection Table
§  On Receive, traffic is steered to

the QP according to existing
steering API
•  Ibv_create_flow()

§  Following, matching RQ is
chosen according to QPs hash
calculation

Transport Object (QP)

struct ibv_rx_hash_conf {
 /* enum ibv_rx_hash_fnction */
 uint8_t rx_hash_function;
 /* valid only for Toeplitz */
 uint8_t *rx_hash_key;
 /* enum ibv_rx_hash_fields */
 uint64_t rx_hash_fields_mask;
 struct ibv_rwq_ind_table *rwq_ind_tbl;

};
/*
 RX Hash Function.
*/
enum ibv_rx_hash_function_flags {

 IBV_RX_HASH_FUNC_TOEPLTIZ = 1 << 0,
 IBV_RX_HASH_FUNC_XOR = 1 << 1

};
/*
 Field represented by the flag will be
 used in RSS Hash calculation.
*/
enum ibv_rx_hash_fields {

 IBV_RX_HASH_SRC_IPV4 = 1 << 0,
 IBV_RX_HASH_DST_IPV4 = 1 << 1,
 IBV_RX_HASH_SRC_IPV6 = 1 << 2,
 IBV_RX_HASH_DST_IPV6 = 1 << 3,
 IBV_RX_HASH_SRC_PORT_TCP = 1 << 4,
 IBV_RX_HASH_DST_PORT_TCP = 1 << 5,
 IBV_RX_HASH_SRC_PORT_UDP = 1 << 6,
 IBV_RX_HASH_DST_PORT_UDP = 1 << 7

};

OpenFabrics Alliance Workshop 2016

RSS
Flow Diagram

IBV_QPT_RAW_PACKET	 	 QPs	 with
IBV_QP_INIT_ATTR_RX_HASH	 =	 1 ibv_rwq_ind_tbl

RQ	 5

RQ	 8

RQ	 4

5

8

5

Enabled	 flags	 in	 rx_hash_fields_mask

IBV_WQT_RQ

TCP	 IPv4	

Udp	
ipv6

MAC2...

Tcp	
ipv4

Verbs	 Steering	 Classifies	 the	 traffic

RX	 Hash	 FuncHash	 Value

UDP	 IPv6	

IBV_QPT_RAW_PACKET	 QPs	 distributes	 traffic	 type	 between	 RQs/Cores

Core	 2

Core	 3

Verbs	 Flows

rx_hash_function

Hash	 Value

Cores

Core	 1CQ1

CQ2

CQ3

IBV_CQs

4
rx_hash_function

Enabled	 flags	 in	 rx_hash_fields_mask

QP#10	

QP#11	

OpenFabrics Alliance Workshop 2016

RSS

§  IPoIB UD QP type
•  “RSS” UD QP is connected to RQ Indirection Table
•  RSS UD QP to continue to manage UD transport attributes: pkey, qkey checks…
•  Single wire QPN for all getting to all the QPs Receive Queues

§  Transmit Side Scaling (TSS)
•  As in RSS, QP is stateless, Send and Receive work queues attributes are invalide
•  Use ibv_post_wq_send instead of ibv_post_send
•  For IPoIB UD QP:

•  Manage UD transport properties: pkey, qkey…
•  Use single source QPN in DETH wire protocol header for all Send WQ which is

the “TSS” UD QP
•  The same QP may be used for both “RSS” and “TSS” operations

Next

OpenFabrics Alliance Workshop 2016

L2 TUNNELING

§  Tunneling technologies like VXLAN, NVGRE, GENEVE were
introduced for solving cloud scalability and security challenges

§  Require extensions of traditional NIC stateless offloads
•  TX and RX inner headers checksum

•  ibv_qp_attr to control inner csum offload
•  Ibv_send_wr, ibv_wc to request and report inner csum

•  Inner TCP Segmentation and De-segmentation (LSO/LRO)
•  ibv_send_wr to support inner MSS settings

•  Outer and inner Ethernet header VLAN insertion and stripping
•  Ibv_qp_attr to control VLAN insert/strip
•  Ibv_send_wr to indicate VLAN
•  Ibv_wc to report strip VLAN

•  Steering to QP according to outer and inner headers attributes
•  Ibv_create_flow(ibv_flow_attr) to support inner headers

•  Perform RSS based on inner or on outer header attributes
•  Ibv_qp_attr.ibv_rx_hash_conf to support inner header attributes

•  Inner packet parsing and reporting its properties in Completion Queue Entry (CQE)
•  Ibv_wc to support inner headers extraction

OpenFabrics Alliance Workshop 2016

CAPTURING

§  Support standard Capturing interfaces and solutions
•  User mode Ethernet traffic (OS Bypass traffic) is capture-able like traditional TCP/IP

stack traffic
•  For Linux: standard PF_PACKET RAW Socket libpcap support, ie. utilities that use

libpcap are supported: tcpdump, wireshark, …
• Windows: Microsoft Message Analyzer (MMA)

§  Both TX and RX traffic
§  Applicable for both ETH and RDMA traffic capturing

HW

IPoIB/MLX ETH

TCP/IP Stack

PF_PACKET PF_INET

Sockets

libpcap

tcpdump capture app

Standard	 capturing	 flow	

Kernel	

User	 mode	 capturing	 flow	

User	 Space	 verbs

OpenFabrics Alliance Workshop 2016

CAPTURING

§  User mode OS bypass capturing application through Verbs API
•  Through ibv_create_flow() plus indicating sniffer flag
•  Classify requested captured traffic
•  Steer to QP. Can be “RSS” QP

OS Bypass Capture App

Priority	 Classifica4on	 Direc4on	 Ac4on	

1	 MAC+VLAN	 TX+RX	 QP#10	 SNIFF	

..	

Ingress	 Traffic	

QP#10	

Egress	 Traffic	

Sniffer	 Flow	 Table	

RQ#0	 RQ#1	 RQ#2	 RQ#3	

OpenFabrics Alliance Workshop 2016

COMPLETION QUEUE (CQ)

§  Extending Verbs Support for user mode Ethernet requires
growing the Work Completion (ibv_wc)

§ More and more attributes are added to ibv_wc
•  Completion time stamp
•  Stripped VLAN
•  Checksum and RSS hash result
•  Tunneling inner headers information
•  ..

§  Completion Queue polling (ibv_poll_cq(ibv_wc*)) is critical data
path operation

§ Growing ibv_wc size will result in performance hit
•  Increased cache misses
•  Redundant extra copies of per vendor HW completion memory to SW completion

memory (ibv_wc)

§ A single completion data for all use cases is obsolete

New Extension Support - Introduction

OpenFabrics Alliance Workshop 2016

COMPLETION QUEUE (CQ)

§  Requirements
•  Completion (CQE) attribute read according

to application needs
•  Per vendor optimizations for each read

access
•  Batch read of multiple Completions (CQE)

followed by single read pointer update
§  ibv_cq is extended to include

function pointers for completion
handling
•  Object oriented approach – no need to over

populate general verbs function namespace
•  Methods will support extracting each

completion attribute
•  So each app can extract only relevant

attributes

New Extension Support - Verbs

struct ibv_cq_ex {
 /* legacy ibv_cq fields */
 ibv_cq cq;
 int comp_mask;

 /* CQ management methods */
 int (*begin_poll_ex)(struct ibv_cq_ex *cq);
 int (*next_poll_ex)(struct ibv_cq_ex *cq);
 void (*end_poll_ex)(struct ibv_cq_ex *cq);

 /* Work Completion per attribure read methods */
 ibv_wc *(*ibv_read_wc)(struct ibv_cq_ex *cq);
 int (*read_result)(ibv_wc_opcode *opcode,

 enum ibv_wc_status* status);
 uint64 (*read_time_stamp)(struct ibv_cq_ex *cq);
 field1_t (*read_field1)(struct ibv_cq_ex *cq);
 field2_t (*read_field2)(struct ibv_cq_ex *cq);
 ..
};

•  Each verbs provider (vendor) will build it’s extraction method
•  Additionally a single method will be provided for extracting mostly used attributes (opcode, status, ..)

§  Batch read support
•  Ibv_begin_poll(ibv_cq*) – Grab CQ lock
•  Ibv_next_poll(ibv_cq*) – Advance CQ read pointer
•  Ibv_end_poll(ibv_cq*) – Update the provider with CQ read pointer (typically doorbell to HW)

OpenFabrics Alliance Workshop 2016

RAW ETH QP PRIVILIGES

§  RAW ETH QP allows app to build it’s own L2/3/4 headers
•  Alike SOCK_RAW socket() type

§  Caller to ibv_create_qp() with QP type of RAW_ETH must have
CAP_NET_RAW privileges
•  Alike SOCK_RAW socket() type

§  Support non-privileged user - L2/3/4 headers must be controlled by OS
§  Option I:

•  Add new QP types: RAW_ETH_UDP, RAW_ETH_TCP
•  Use ibv_ah for RAW ETH QP
•  Add d.IP indication to ibv_ah
•  On ibv_create_ah()ib_core will perform route and address resolution to determine source I/f and

corresponding s.MAC, s.IP and d.MAC.
•  L2/L3 header info will be cached in ibv_ah and registered for updates in case neigh is updated

•  Perform period updates of kernel dst neigh aging timers
•  HW is configured to enforce headers checks

§  Option II:
•  Stay with single QP Type: RAW_ETH
•  App still build L2/3/4 headers itself
•  HW is configured to enforce headers checks on allowed L2/3 addresses and L4 ports per QP
•  Allowed addresses, ports may be configured though ibv_create_qp and/or ibv_create_flow()

§  Continue supporting RAW access for privileged users

Under Definition

OpenFabrics Alliance Workshop 2016

CONCLUSION

§  Verbs API infrastructure is a robust and efficient API
§ Generic object model to expend to new I/O offloads
§  Control and data path infrastructure

•  Use OS services for control path and allow bypass for data path
•  Can answer performance requirements for both high PPS, BW and low latency

§  Extendable in backward and forward compatible manner
through Verbs extensions

Great platform to expand user mode Ethernet programming

12th ANNUAL WORKSHOP 2016

THANK YOU
Tzahi Oved

Mellanox Technologies

[LOGO HERE]

