

12th ANNUAL WORKSHOP 2016

MULTI-RAIL LNET FOR LUSTRE

Amir Shehata, Lustre Network Engineer, Intel Corp Olaf Weber, Senior Software Engineer, SGI Storage Software

April 6th, 2016

MULTI-RAIL LNET: WHAT AND WHY

AGENDA

- Overview of Multi-Rail design in LNet
- Why LNet level implementation
- Multi-Rail Use Case scenarios
- How to configure and use Multi-Rail

OVERVIEW

WITHOUT MULTI-RAIL

WITH MULTI-RAIL

MULTI-RAIL OBJECTIVES

- Multi-Rail allows nodes to communicate across multiple interfaces
 - Using multiple interfaces connected to one Luster Network
 - Using multiple interfaces connected to several Lustre Networks
 - Use different Network Interface types
 - These interfaces are used simultaneously (active-active)

WHY IN LNET

Two possible solutions

- Implement Multi-Rail in LNet
 - Utilize the same or different network interface types.
 - Ex: try to send over OPA/IB network, if that fails send over TCP network
- Implement Multi-Rail in the LND
 - It will have to be implemented for every LND
 - Only bonds interfaces of the same type
- This Multi-Rail design and implementation is done in LNet
- This is a collaboration between Intel and SGI

WHAT DOES MULTI-RAIL GIVE US

From LNet perspective, there are two major advantages

- Increasing LNet performance by aggregating bandwidth of multiple interfaces
- Increasing network resiliency by trying all possible interfaces before a message is declared not deliverable

INCREASING BANDWIDTH - CLIENTS

SGI Big Clients

- SGI UV 300: 32 socket NUMA system
- SGI UV 3000: 256 socket NUMA system
- Systems with multiple TB of memory need a lot of bandwidth
- Increase bandwidth by adding more interfaces.

INCREASING BANDWIDTH - SERVERS

Big clusters

- Bandwidth to the server becomes a bottleneck
- Add more interfaces to the servers and configure LNet to use them.
- Messages can also be multiplexed over the interfaces of the remote peer, which can be configured statically or discovered dynamically.

INCREASING BANDWIDTH

Multi-Rail

- Multiplexes across interfaces
 - Each LNet message is sent over a different local interface
 - Local interfaces are selected depending on several criteria:
 - the NUMA distance between the NI and the message memory.
 - » In large systems (SGI UV) this can be a significant performance advantage.
 - How busy an NI is, determined by a set of credits associated with the NI

RESILIENCY – MULTIPLE NIS/SAME NETWORK

RESILIENCY – MULTIPLE NIS/SAME NETWORK

RESILIENCY – MULTIPLE NETWORKS

RESILIENCY – MULTIPLE NETWORKS

CONFIGURING MULTI-RAIL LNET

USE CASES

- Improved performance
- Improved resiliency
- Allow multiple networks access to the filesystem such that you don't have to have all clients on the same network.
- Better usage of large clients resource, including NUMA aware clients (IE: SGI UV)
- Fine grained control of traffic

CONFIGURATION SETTINGS

- The following elements can be configured via User Space utility (Inetctl):
 - Local Network Interfaces
 - These are the interfaces by which a node sends messages
 - Remote Peer Network Interfaces
 - These are the remote network interfaces to which a node sends messages.
 - Selection Rules
 - These are the set of rules which determine the local network interface/remote peer interface used for communication.

TWO TYPES OF CONFIGURATION METHODS

Multi-Rail can be configured statically, via Inetctl (DLC).

- The following elements has to be configured statically.
 - Network Interfaces
 - Selection Rules
- The following elements can be configured statically or discovered dynamically
 - Peer Network Interfaces
- Configuration can be described via YAML syntax
- Dynamic discovery can be enabled allowing LNet to discover peers automatically

STATIC CONFIGURATION – BASIC CONCEPTS

• On a node:

- Configure Local Networks Interfaces
 - Ex: tcp(eth0, eth1)
 - <eth0 IP>@tcp, <eth1 IP>@tcp
- Configure Remote Network Interfaces
 - Specify a peers Network Interface IDs (NIDs) which it can be reached on
 - <peerX primary nid>, <peerX nid2>, etc
- Configure selection Rules

The static configuration method is useful

- if the cluster is not subject to change and you want to catch any changes to the Network Layout.
- If Primary NID of a server is not reachable on a specific network

DYNAMIC CONFIGURATION – BASIC CONCEPTS

USE CASE 1 – IMPROVED PERFORMANCE

USE CASE 2 – IMPROVED RESILIENCY

USE CASE 3 – MULTI-NETWORK FS ACCESS

USE CASE 4 – TRAFFIC CONTROL

PROJECT STATUS

- Public project wiki page:
 - http://wiki.lustre.org/Multi-Rail_LNet
- Code development is done on the multi-rail branch off the Lustre master repo.
 - Patches to enable static configuration are under review
 - Unit testing and system testing underway
 - Patches for selection rules are under development
 - Patches for dynamic peer discovery are under development
 - Estimated project completion time: end of this year
 - Master landing date: TBD

12th ANNUAL WORKSHOP 2016

THANK YOU

Amir Shehata, Lustre Network Engineer

Intel Corp

