
12th ANNUAL WORKSHOP 2016

RDMA AND USER SPACE ETHERNET
BONDING

Tzahi Oved

[April , 2016]
Mellanox

[LOGO HERE]

OpenFabrics Alliance Workshop 2016

AGENDA

§  Introduction
•  NIC Teaming
•  RoCE and ib_device
•  Application view

§  RDMA Device HW Bonding
§  HW Bond and virtualization

•  Embedded Switch SW Model
•  Embedded Switch and HW Bonding

§ Multi-PCI Socket NIC
•  Introduction
•  HW Bonding for app transparency

§  Summary

2	

OpenFabrics Alliance Workshop 2016

INTRODUCTION

§  IEEE 802.3ad defines how to combine multiple physical network
ports to single logical port for:
•  High Availability
•  Load balancing

§  Linux uses Bonding/Teaming device for building Link
Aggregation trunk

§  Both expose software net_dev that provides LAG I/F toward the
networking stack

§  Team/bond is considered “upper” device to “lower” enslaved
NICs net_devices

§  Different modes of operation
•  Active/Passive
•  802.3ad (LAG) static and dynamic (LACP)

§  Traditional network stack sees single “upper” net_dev

Bonding / Team drivers

OpenFabrics Alliance Workshop 2016

INTRODUCTION

§  The upstream RDMA stack supports multiple transports: RoCE, IB, iWARP
§  RoCE – RDMA over Converged Ethernet, RoCE V2 (upstream 4.5), IBTA

RDMA headers over UDP.
§  RoCE uses IPv4/6 addresses set over the regular Eth NIC port net_dev
§  RoCE apps use RDMA-CM API for control path and verbs API for data path
§  RDMA-CM API (include/rdma/rdma_cm.h)

•  Address resolution – Local Route lookup + ARP/ND services (rdma_resolve_addr())
•  Route resolution – Path lookup in IB networks (rdma_resolve_route())
•  Connection establishment – per transport CM to wire the offloaded connection (rdma_connect())

§  Verbs API
•  Send/RDMA – Send message or perform RDMA operation (post_send())
•  Poll– Poll for completion of Send/RDMA or Receive operation (poll_cq())

•  Async completion handling and fd semantics are supported
•  Post Receive Buffer – Hand receive buffers to the NIC (post_recv())

§  RDMA Device – ib_device
•  The DEVICE structure, exposes all above operations
•  Associated with net_device

§  Available for both RoCE and user mode Ethernet programming (e.g. DPDK)

RDMA over Ethernet (RoCE) / RDMA-CM

OpenFabrics Alliance Workshop 2016

ETHERNET BONDING
Application Point of View

eth0	 eth1	

Linux	 Bonding	

bond0	

TCP/IP	

Sockets	

Socket	
App	

Verbs	
App	

User	
Kernel	

Ib_dev	 Ib_dev	

User	 	 Verbs	

Sock	

Sock	

QP	

HCA	 QP	 HW	
Kernel	

OpenFabrics Alliance Workshop 2016

RDMA DEVICE HW BONDING

§  Register new ib_dev associated with
the bond net_dev
•  eth0, eth1 will listen on Linux bond enslavement

netlink events
•  New device will use provider pick of PCIe

Function (PF0/1 or both) for device I/O

§  Registered RDMA devices
associated with eth0, eth1
• Will unregister and re-register to drop existing

consumers on enslavement
• Will be used for port management only through

Port Immutable ops (get_port_immutable())
•  Alike the Linux Bonding enslaved net_devs

eth0

Phys
Port1

PCIe
PF0

eth1

Phys
Port2

Linux Bonding/
Teaming

PCIe
PF1

HW
Bond

RDMA
Device

RDMA
Device

bond0

RDMA
Device

NIC	

OpenFabrics Alliance Workshop 2016

RDMA DEVICE HW BONDING – CONT.

§  HW Bond
•  NIC logic for HW forwarding of ingress traffic to bond/

team RDMA device
•  net_dev traffic is passed directly to owner net_dev

according to ingress port
§  Failover

•  RoCE and user mode Eth traffic transport object
(QP) port is migrated transparently in HW

•  Traditional net_dev I/F traffic remains associated with
slave net_dev

§  Verbs
•  Use transport object (QP) attribute: port affinity

§  Configuration
•  Native Linux administration
•  RoCE Bonding is mainly auto configured

§  LACP ((802.3ad)
•  Either handled by Linux bonding/teaming driver
•  Or in HW/FW for supporting NICs (required for many

PFs to single phys port configurations)

eth0

Phys
Port1

PCIe
PF0

eth1

Phys
Port2

Linux Bonding/
Teaming

PCIe
PF1

HW
Bond

RDMA
Device

RDMA
Device

bond0

RDMA
Device

NIC	

OpenFabrics Alliance Workshop 2016

HW BOND AND VIRTUALIZATION
eSwitch Software Model – Option I

eth0

rep_vf0

rep_vf1

Linux/OVS Bridge

br0

Linux	 Switch	 Device	

SRIOV
VM0

SRIOV
VM1

NIC	

eSwitch

Native OS

Phys
Port

PCIe
VF0.0
PCIe
VF0.1

PCIe
PF0

RDMA
Device

VM2

VM3

OpenFabrics Alliance Workshop 2016

HW BOND AND VIRTUALIZATION
eSwitch Software Model – Option II

rep_phy0

rep_vf0

rep_vf1

Linux/OVS Bridge

rep_eth0

eth0

Linux	 Switch	 Device	

SRIOV
VM0

SRIOV
VM1

NIC	

eSwitch

Native OS

Phys
Port

PCIe
VF0.0
PCIe
VF0.1

PCIe
PF0

RDMA
Device

VM2

VM3

OpenFabrics Alliance Workshop 2016

HW BOND AND VIRTUALIZATION
eSwitch Software Model with HA

rep_phy0

rep_vf0

rep_vf1

Linux/OVS Bridge

rep_eth0

eth0

Linux	 Switch	 Device	

SRIOV
VM0

SRIOV
VM1

NIC	

Native OS

Phys
Port1

PCIe
VF0.0
PCIe
VF1.0

PCIe
PF0

Phys
Port2

Linux Bonding

PCIe
PF1

RDMA
Device

rep_phy1

eSwitch

HW
Bond

VM2

VM3

OpenFabrics Alliance Workshop 2016

HW BOND AND VIRTUALIZATION
eSwitch Software Model with Tunneling

rep_phy0

rep_vf0

rep_vf1

Linux/OVS Bridge

rep_eth0

eth0

Linux	 Switch	 Device	

NIC	

eSwitch

UDP/IP
Stack

Phys
Port

PCIe
PF0

RDMA
Device

VM2

VM3

OVS-VX
Bridge

vxlan	 net_device	 	
VNI	 (Key)	

SRIOV
VM0

SRIOV
VM1

PCIe
VF0.1

PCIe
VF0.0 HW

Tunnel

OpenFabrics Alliance Workshop 2016

MULTI-PCI SOCKET NIC

§  Single NIC can be connected through one
or more PCIe buses

§  Each PCIe bus is connected through
different NUMA node

§  For OS, exposed as 2 or more net_device
each with it’s own associated RDMA
device

§  Application enjoy direct device to local
NUMA access
•  Using local network I/F per NUMA node

§  Boosting performance for HPC and Cloud
•  QPI avoidance for I/O – Optimal performance
•  Enables GPU / peer direct on both slots
•  Enables Direct Data I/O (DDIO) acceleration for both

sockets

CPU	 CPU	
QPI	 	

PCIe	 X8	 PCIe	 X8	

OpenFabrics Alliance Workshop 2016

MULTI-PCI SOCKET NIC
Benchmark

20%	 Lower	 Latency	

50%	 of	 CPU	 Overhead	
Lo
w
er
	 is
	 b
eN

er
	

OpenFabrics Alliance Workshop 2016

MULTI-PCI SOCKET NIC

§  Application use & feel – would like to work
with single net I/F

§  Use Linux bonding with RDMA device
bonding

§  For TCP/IP traffic
•  On TX, select slave according to TX queue affinity
•  On RX, use accelerated RFS to educate the NIC which

slave to use per flow
§  For RDMA/User mode ETH traffic select slave

according to:
•  Explicit - Transport object (QP) logical port create affinity

attribute
•  Or transport object creation thread CPU affinity attribute
•  QPn namespace is divided across slaves

•  On receive use QPn to slave mapping
•  From BTH or from Flow Steering action

§  Don’t share HW resources (CQ, SRQ) on
different CPU sockets
•  each device has it’s own HW resources

Transparency to the App

eth0

Phys
Port

PCIe
PF0

eth1

Linux Bonding/
Teaming

PCIe
PF1

HW
Bond

RDMA
Device

RDMA
Device

bond0

RDMA
Device

NIC	

OpenFabrics Alliance Workshop 2016

SUMMARY

§  Traditional stack transport logic is managed in software (TCP/IP)
§  RDMA transport logic is managed in NIC HW
§ Migrating the HW managed transport object from failed port

requires HW aid
•  Currently limited to phys port of the same adaptor

§  Building on top of existing infrastructure provides seamless
administrative and application wise configuration
•  Allows HW awareness of the configuration and failover event

§  Same logic may be used for representing multiple logical
devices to single phys device interface

12th ANNUAL WORKSHOP 2016

THANK YOU
Tzahi Oved

Mellanox Technologies

[LOGO HERE]

