
12th ANNUAL WORKSHOP 2016

RDMA RESET SUPPORT
Liran Liss

[April 4th, 2016]
Mellanox Technologies

OpenFabrics Alliance Workshop 2016

INTRODUCTION

§  Several events may require re-initializing/suspending the
operation of a device
•  PCI errors
•  Device errors
•  Unresponsive device
•  Device isolation
•  Hot unplug (e.g., VM migration)
•  Driver restart

§  In such cases, device resets are required to
•  Idle the device
•  Bring the device into a known state

§  Example
•  tx_timeout() handler when an Ethernet interface doesn’t complete transmissions

2	

OpenFabrics Alliance Workshop 2016

RESET DESIRABLES

§  Avoid dependencies on device consumers

§  Complete in a timely manner
•  Often, a timeout is what brought us here in the first place...

§ Minimize affects to consumers
•  Recover automatically
•  “Invisible” to system operation

§  Disable device as a last resort
•  E.g., if normal operation cannot be resumed
•  Ensure that device is idle

Stop!	

I	
 need	
 to	
 reset

Just	
 let	
 me	
 finish	
 sending	

this	
 packet	
 first…

OpenFabrics Alliance Workshop 2016

RDMA CHALLENGES

§  Device is stateful
•  Resources, connection state, in-flight WRs
•  During a reset, this state may be lost

§  Applications and ULPs manipulate HW resources directly
•  Maximum efficiency, minimum abstraction
•  Resets are observable

§  User-space holds device references
•  Direct via uverbs, Indirect via ucma
•  Cannot be trusted to release them in a timely manner

OpenFabrics Alliance Workshop 2016

RDMA CHALLENGES (CONT.)

§ Multi-layer dependency
•  For example:

•  iSERàCMAàCMàMADàQPàib_dev
•  iSERàQPàib_dev

• Which layer do you tear down first?
•  iSER depends on MADs, so iSER should go down first
•  How can the MAD layer complete operations if the device is not working?

OpenFabrics Alliance Workshop 2016

KERNEL RESET SUPPORT

§  Reset = abortive shutdown + reinit
•  Leverage normal dependency order of remove/add ()
•  Adding another asynchronous state is complex

§  Abortive shutdown
•  Place device in “error mode”
•  Raise IB_EVENT_DEVICE_FATAL event
•  Unregister device

•  Triggers remove() sequence

§  Device “error mode”
•  Complete in error all in-flight + new WRs

•  Alternatively, return immediate error for new Post_Send/Recv()’s
•  Successfully “complete” all Verbs that close resources

•  Otherwise, ULPs will hang or risk memory corruption!!!
•  Return immediate errors for all remaining Verbs

ibdev

ULP1

ULPn

1.	
 Enter	
 “error	
 mode”

2.
	
 D
EV

IC
E	

FA

TA
L 3.	
 rem

ove_one()

OpenFabrics Alliance Workshop 2016

ULP ASSUMPTIONS

§  Upon receiving DEVICE_FATAL event
•  Assume that underlying device is in “error” mode
•  Service API calls in a timely manner

•  Do not condition on successful control or data path device operation
•  Optionally return immediate errors (optimization)

•  Optionally avoid internal reset sequences (optimization)
•  E.g., attempt reopening a QP following a completion in error

§  Upon receiving remove()
•  Close all directly held device resources
•  Free logical instance…

ULPx

ibdev

Service	
 ULPx+1	
 without	

relying	
 on	
 successful	

HW	
 operaTon

No	
 assumpTons	
 on	
 ULPx-­‐1

OpenFabrics Alliance Workshop 2016

ISOLATING USER-SPACE

§  HW resources must be dereferenced prior to closing a device
•  Kernel ULPs may be trusted to do so

§  Some (non-)options for user-space applications
•  Let the application hold the kernel hostage
•  Force the application to release resources! Well, not really….
•  Kill the application!

§  Solution: zombify open device instances
•  Zombie: a SW implementation of a device in “error mode”

•  Doesn’t hold any reference to HW
•  Zombies persists until the last reference is dropped
•  Application may attempt to reopen the same device

App	
 A App	
 B

ib_uverbs

ib_core

HW	
 device	
 driver

OpenFabrics Alliance Workshop 2016

SPAWNING A ZOMBIE

§  uverbs
•  Disassociate HW from existing uverbs context

•  Free all resources in IDR trees
•  Call provider disassociate_ucontext() entry point

•  Redirect memory mappings, free resources, etc.
•  Return EIO for all system calls

§  ucma
•  Destroy underlying RDMA IDs
•  Mark ucma_context as closed

•  Avoid duplicate closing when App releases RDMA ID
•  Return EIO for all other system calls

§  No change required in umad/ucm

OpenFabrics Alliance Workshop 2016

PROVIDER RESET SUPPORT

§  Kernel driver
•  Implement “error mode”
•  Implement disassociate_ucontext()

•  For example
•  Remove MMIO mappings to device
•  Free related resources
•  Notify user-space driver

§  User-space driver

•  Implement “error mode”

OpenFabrics Alliance Workshop 2016

UPSTREAM STATUS

§  Linux 4.3
•  Reset flow framework

•  ib_uverbs, ib_ucma
•  ConnectX-3 complete kernel driver support

§  Linux 4.4
•  ConnectX-4 PCI reset support

§ Ongoing work
•  ConnectX-4 complete kernel driver support

OpenFabrics Alliance Workshop 2016

FUTURE WORK

§  ib_uverbs
•  Graceful abort

•  Allow grace period for apps to close their references

§  librdmacm
•  Respond to RDMA_CM_EVENT_DEVICE_REMOVAL

•  Refresh device list

§  Maintain ULP context and SW state during reset
•  Introduce new IB client ops:

•  stop() – release all references to HW resources
•  start() – re-create HW resources

•  Fallback to remove()/add () if not implemented

§  Persistent names
•  Kernel and udev support for renaming RDMA devices based on Node GUIDs

12th ANNUAL WORKSHOP 2016

THANK YOU

