A Database Guy’s Journey Into
RDMA Multicast
OFA Workshop 2016

April 4-8, 2016, Monterey, CA

Christian Tinnefeld Markus Dreseler
SAP Labs, Inc. Hasso Plattner Institute
3410 Hillview Avenue University of Potsdam
94304 Palo Alto, United States August-Bebel-Str. 88
christian.tinnefeld@sap.com 14482 Potsdam, Germany

markus.dreseler@hpi.de

This work was prepared and accomplished by Christian Tinnefeld and Markus Dreseler in their personal capacity.
The opinions expressed in this article are the authors' own and do not reflect the view of SAP Labs, SAP SE or the Hasso Plattner Institute.

Content

1. Motivation
1. Project Hana Vora at SAP
2. Which communication framework to choose?

2. Multicast and group communication operations in a distributed DBMS
1. Which DBMS scenarios and operators can benefit?
2. What kind of payload do we have?
3. What are open / unanswered questions?

3. RDMA multicast
1. Benefits of hardware support for multicast
2. Experimental setup
3. Insights

4. Conclusions

Part 1) Project Hana Vora at SAP

Vora is a distributed computing
platform built on in-memory
technology to scale to 1000s of nodes
using commodity hardware both on-
premise and in cloud deployments.

Based on data-centric JIT compilation
of SQL queries to byte / C / machine
code with LLVM

Uses NUMA-aware data structures and
algorithms

Extensibility: Provide easy to use APIs
available for C, C++, go, Python, Java,
Scala etc.

Written from scratch but shares
concepts from other in-memory
projects

Tight integration with Apache Hadoop
ecosystem and Spark

~—O— >

DQP Query Engine 1

el
A\

Query Engine 2

Connection 1 R> Transaction Broker R>
-| (Session data) 1OT Version Table -O—+ H ,

DTX Query Engine 3
Connection n rtorage Storage StorageJ
1 2 n
" DistributedLog

<R

A

Storage (checkpoints)

Part 1) Communication framework requirements

* From an application developer’s perspective
* Dead-simple interface
* As few instructions as possible
* One code line, best usage of available networking hardware
* Additional language bindings (e.g. GO, python)

* Aware of NUMA regions, memory affinity for addressing and dispatching
* TCP stack that works anywhere (no matter which OS, hardware etc.)

* RDMA stack that supports
* Rendezvous
* Scatter/Gather for non-consecutive memory regions
* Atomic operations

* (MPI-like) group communication operations
* Basic one-to-all
* Advanced all-to-all, barrier etc.

* Integration with external polling context

* Integration with custom memory allocators

Part 1) IB-verbs / Accelio / libfabric / MPI

* |B-verbs
* Low-level and verbose
» Take care of things you take for granted (e.g. flow control)
* Comparatively low developer productivity / easy to make mistakes

e Accelio / libfabric

* No support of all popular operating systems
* No support for any group communication operations (broadcast, multicast)

* MPI

* Mainly intended as tool for HPC community

* Although there are ways to ensure fault-tolerance, dynamic scheduling rarely
used in distributed data processing projects

Part 2) Which scenarios can benefit from group communication operations?

* Transfer of data partitions
* Needed for load balancing, scale-out, recovery in failure cases

* Requirements: High bandwidth, basic one-to-many operations, work on pinned memory, address memory on a per-NUMA level

* Accessing (meta) data in the catalog
* Needed for storing table meta data, cluster information, possibly data dictionaries etc.
* Requirements: Smart serialization needed, frequent operations on small data items, latency matters

* Distribution of intermediate results during query execution
* Needed for supporting the exchange operator and execution of complex distributed operations
* Requirements: High bandwidth, work on pinned memory, address memory on a per-NUMA level, extensive use of group communication operations
(one-to-many, many-to-one, all-to-all)
* Storing and accessing data in the distributed log
* Needed to provide persistent data storage
* Requirements: similar as transfer of data slices plus RDMA atomic operations (e.g. increment operation for the sequencer)

* Transaction processing
* Needed to provide some sort of isolation level, ACID properties
* Requirements: Heavily exploit low latency, basic one-to-many operations, focus on RDMA-specific operations for acquiring/releasing locks etc.

* Check pointing intermediate results
* Needed for storing intermediate results during query execution for failover cases
* Requirements: High bandwidth, basic one-to-many operations, smart memory management (e.g. when are intermediate results no longer needed)

* |In general: deployment of Vora
* We want to be able to deploy Velocity anywhere
* Requirements: Network stack must run on Windows, Linux, Mac, x86, ARM, high-end server etc.

Part 2) Joins + Multicast

* Back-of-the-envelope calculations how much data gets transferred with each group communication
operator invocation. The goal is to get feedback from Intel what is feasible/what is not.
 We take join executions as example with a right semi join performed on relations (aka columns) R and S
where the result includes the matching positions in S. We assume that one positional entry is of 8 bytes
size
 We assume that R holds 100.000.000 records per node and S holds 10.000.000 records per node (R = 10x
S). The record size is 4 bytes. We assume the selectivity of the join is 10%. The amount of records grows
linearly with the number of nodes.
* The joins can be either executed via Grace Join or Distributed-Block-Nested-Loop Join (DBNL Join). The
execution of the algorithms can benefit from the group communication operators in the following ways:
* Grace Join:
e initial redistribution of to be joined relations: multicast
e consolidation of join result: gather
* DBNL Join:
* (non streaming) replication of relation S: multicast
* (streaming of S, decentralized orchestration): redistribution of S: scatter
* (streaming of S, centralized orchestration): redistribution of S: all-to-all
e consolidation of join result: gather

Part 2) Joins + Multicast

10

100

1000

10000

nodes nodes nodes nodes
20 operator 200 operator 2000 operator 20000
redistribution of to be joined relations: scatter invocations invocations in invocations in invocations in
G race (one invocation per relation per node) total total total total
Data transfer in GB
Join 4.4 GB total 44 GB total 440 GB total 4400 GB total
consolidation of join result: gather 0.08 GB 0.8GB 8 GB 80 GB
Data transfer in GB per operator invocation
(non streaming) replication of relation S: 10 operator 100 operator 1000 operator 10000 operator
multicast invocations invocations invocations invocations
Data transfer in GB total total total total
0.4 GB total 4 GB total 40 GB total 400 GB total
(streaming of S, decentralized orchestration): 102 operator 1002 operator 10002 operator 100002 operator
DBNL redistribution of S: scatter invocations invocations invocations invocations
. Data transfer in GB per operator invocation total total total total
Join
0.4 GB total 4 GB total 40 GB total 400 GB total
(streaming of S, centralized orchestration): 10 operator 100 operator 1000 operator 10000 operator
redistribution of S: alltoall invocations invocations invocations invocations
Data transfer in GB per operator invocation total total total total
0.4 GB total 4 GB total 40 GB total 400 GB total
consolidation of join result: gather 0.08 GB 0.8GB 8 GB 80 GB

Data transfer in GB

Note: we ignore that in practice the overall data transfer amount and the number of operator invocations would be 1/(number of nodes) smaller

Part 2) Open Questions

* How well do multicast operations scale...
* ...with varying payload sizes?
* ...with a varying number of participants?
 ...with different levels of congestions?

* What are the costs for creating/modifying multicast groups?
* What are the performance benefits in comparison to unicasts?

Part 3) Hardware support for multicast

Traditional (Unicast) Messaging

- A

)

EE CPU
i TT [Node 1
M

‘ NIC E[Switch A Node 2
—/

Node 0 Node n)
- Y,

—/

—/

— Data Flow

“Control” Flow

Part 3) Hardware support for multicast

Unicast Low-Latency Messaging

4 2

—
CPU
A 7 (" Node1)
M

——| Hoa E[Switch A Node 2)
—/

. Node 0) Node)

— Data Flow

“Control” Flow

Part 3) Hardware support for multicast

Multicast Low-Latency Messaging

e N
M)
CPU

R
A [Node 1)

M
/v[Node 2)

——» HCA —— Switch
Node 0 Node n)
- J

— Data Flow

“Control” Flow

Part 3) Hardware support for multicast

Complex Multicast Low-Latency Messaging

f

o

<>

CPU

\

_>

Node O

Node 1

)

—»[Switch /'[Svfifi:h]::E

J

— Data Flow

Node n

)

“Control” Flow

Node 2

—/

Node 3

—/

Part 3) How to make use of it?

Nodes have to join multicast groups in order to receive messages
Right now, only ibverbs (the lowest-level library) supports this out-of-the-box
rdma_join_multicast(id, addr, [context])

id is similar to a network socket, addr is the IB multicast address

Part 3) Management of multicast groups

* The join method asks the subnet manager to program the switches according to
the multicast configuration

* From then on, everyone may send datagrams to the multicast group, even when
they are not part of it

* One cycle of joining and leaving MC groups takes approx. 400 us

Part 3) Benchmarks

* Setup
* 8 phyiscal nodes equipped with Intel Xeon CPUs
* Mellanox ConnectX-3 VPI adapter; single-port QSFP; QDR IB (40Gb/s) and 10GigE

* Mellanox SwitchX®-2 InfiniBand Switch
* |bverbs + rdmacm, based on mckey

e Big thanks to Intel and Karthik Kumar for sponsoring the cluster and fruitful discussions

Part 3) Benchmarks

1400 ms |
1200 ms |-
100.0 ms |
80.0 ms}
60.0 ms}
400 ms}
200 ms}

00ns

1400 ms [
1200 ms |-
100.0 ms |-
80.0 ms}
60.0 ms}
400 ms}
200 ms}

00ns

1400 ms |
1200 ms |-
100.0 ms |-
80.0 ms}
60.0 ms}
40.0 ms}

20.0 ms
00ns

1 receivers
benchmark
— RC
— UD
— UD + MC
Eﬁ‘.'_'_v’_-_’.’—_.-—-_’;"—.'_-——n_‘
05 10 15 20 25 30 35 40
size 1e7
4 receivers
05 l.b 15 20 25 30 35 40
size le7
7 receivers
05 10 15 20 25 30 35 40
size le7

14140.0 ms |
4120.0 ms |
4100.0 ms |
1 80.0 ms |
4 60.0 ms |
4 40.0 ms

20.0 ms
00ns

"J140.0ms |-
4120.0 ms |
4100.0 ms |
4 80.0 ms |
4 60.0 ms |
1 40.0ms |
4 20.0 ms |

00ns

2 receivers 3 receivers
' ' "J140.0 ms | ' '
4120.0 ms |
4100.0 ms |
1 80.0 ms |

4 60.0ms}

% 0omsy

20.0ms.’~’~___’_~___~d—--’/_
05 10 15 20 25 35 |

0.0 ns B==
10 15 20 25 30 35 40
size size 1le7

5 receivers 6 receivers

1400 ms |
4120.0 ms |
4100.0 ms |
4 80.0 ms |
{1 60.0 ms |
4 40.0ms |
41 20.0ms L
0.0ns

40
1e7

25 3.0 35

size

20

15

20 10
1e7

20 25 30 35

size

05

RC = reliable connection, unicast (blue)

UD = unreliable connection, unicast (green)
MC = unreliable connection, multicast (red)
Varying number of receivers

Varying payload from 1 — 40 Megabytes
Varying average execution time in

milliseconds =

Conclusions

e Communication framework
* No one-size-fits-all framework available yet
* Accelio / libfabric:

* lack of supporting standard operating systems
* no group communication support as of now

* Group communications
 MPI is the top dog

* Relevant for modern distributed data processing systems as they constantly grow in size
* Currently, no/very little use of any group comm. patterns in modern data processing projects
* Chicken / egg problem:

* Network vendors make amazing hardware
* Advanced features are hard to use (please use ibverbs if you want multicast)
* No clear quantification of benefits of modern hardware

Thank youl

christian.tinnefeld@sap.com

