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LHCB, THE USE CASE 
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REMINDER ON LHC 

§  Accelerator of 27 km 
§  10 000 superconductive magnets 
§  Collision energy up to 14 TeV 
§  Proton-Proton collisions, but also heavy-ions 
§  4 BIG experiments :  

•  ALICE, ATLAS, CMS, LHCb 
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LHCB, AN UPGRADE FOR 2018-2020 

§  Update of sub-detectors 
§  Removal of hardware trigger 

•  Currently in custom FPGA 
•  Hard to maintain and update 
•  In radiation area 

§  Filter farm will need to handle : 
•  Larger event rate (1 Mhz to 40 Mhz) 
•  Larger event size (50 KB to ~100 KB) 

§ Much more data for DAQ & Trigger 
§  It made 4 TB/s (32 Tb/s) 
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WHY TRIGGERING ? 

§ We cannot store all of the collisions ! 
• Far too much data ! 

§ Most collisions produce already well known physics 

§ We keep only interesting events for new physics 

§ Challenge for upgrade: need to trigger in software only 
• Need to improve current software performance 
• A factor of 100 (hardware + software) 

§ For some costly functions 
• Look at GPU 
• Look at possible CPU embedded FPGA for some costly functions 
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DATAFLOW 

§  Numbers 
•  ~10 000 optical links going out from 

detector to the surface (~300 m) and 
up to ~4.5 Gb/s each. 

•  ~500 readout nodes  
(up to 48 input links each) 

•  Up 100 Gb/s incoming per node 

§  Lead to a total of ~4 TB/s 
•  Or 32 Tb/s 

§  Need a 100 Gb/s network to 
aggregate the data 

§  All of this in real-time 
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EVENT BUILDING NETWORK 
EVALUATION 
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COMMUNICATION PATTERN 

§  Work with 4 units: 
•  Readout unit (RU) to read data from PCI-E readout board 
•  Event manager (EM) to dispatch the work over Builder unit (credits) 
•  Builder unit (BU) to merge data from Readout unit and send to Filter unit. 
•  Filter Unit (FU) to select the interesting collisions. 

§  RU/BU mostly does a kind of “many gather” 
•  To aggregate the data chunks from each collision 
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IO NODES HARDWARE 

§  Three IO boards at 100 Gb/s per node: 
• PCI-40 for fiber input 
• Event building network 
• Output to filter farm 

§  Also stress the memory (400 Gb/s of total traffic) 
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THE DAQ NETWORK TECHNOLOGIES 

§ We need 100 Gb/s per node (RU/BU) 
•  Some margins, 80 Gb/s might be fine 

§  Not as HPC apps 
• We need to fully fill the network continuously 
•  Bad pattern : many all-gathers (all-to-all) ! 

§  Think of using a fat-tree topology 

§  Technologies we looked on: 
•  InfiniBand EDR 
•  Intel® Omni-Path 
•  100 Gb/s Ethernet 
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INTERFACES TO EXPLOIT THEM 

§  MPI 
•  Support all networks 
•  Optimized for IB/Intel® Omni-Path 
•  How to support fault tolerance ? 

•  We need to run 24h/24h and 7d/7 

§  InfiniBand VERBS 
•  For IB only 
•  Low level 
•  Might be OK for fault tolerance 

§  Libfabric 
•  For IB, Intel® Omni-Path, and TCP 
•  Low level 
•  Node failure and recovery support to be studied. 

§  TCP/UPD (we don’t depend on latency) 
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DAQPIPE 

§  A benchmark to evaluate event building solutions 

§  Three message size on the network 
•  Command : ~64 B 
•  Meta-data : ~10 KB 
•  Data : ~1 MB 

§  Manage communication scheduling models 
•  Barrel shift ordering (with N on-fly) 
•  Random ordering (with N on-fly) 
•  Send all in one go 

§  Support various APIs 
•  MPI 
•  TCP 
•  Libfabric 
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FIRST FEELING WITH LIBFABRIC AS USER 

§  Lack of some simple (one file) example 
•  Fabtest fine 
•  but codes split in multiple functions and handle all cases 

•  Good: we get something full to run 
•  Less good: it took time to dig in to learn 

§  Lack of beginner guide     =>      (I started on 1.1.0rc2) 
•  => Thanks to Jianxin Xiong 

§  Easy to develop codes thanks to TCP support 
• Write using TCP, then test over VERBS or PSM 
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ONCE GOING THROUGH THE INIT STEP 

§ Quite quickly to get running  
• Using fi_send / fi_remote_write 

§  I come from OS/HPC memory management PhD. 
• So: not already an expert on fabrics 
• Ok, I was in a thread-based MPI researching group 
•  I did not previously know the app 

§ Some rounded numbers 
• ~1-2 week of sandbox playing 
• ~1-2 week to get init running in my app 
• ~3-4 days to get communications in place  
• +X days of debugging (I also changed some other stuff)….. 
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DUAL SUPPORT MSG / RDM 

§  Yes it is managed by the same library 
•  But different semantic. 

§  In practice need to duplicate a big part of the code 
•  At least the init 

§  But also if statements for the communications  
• Address vector VS. endpoints 
• Different tagging approach (4 bytes vs 8 bytes) 

§ Get some issues to see my IB board in fi_info 
•  That’s my fault but (~3 days)… 
• Not sure to completely understand the filtering mechanism 

§  That’s fine, but I naively expected less diff 
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MY LIBFABRIC USAGE 

§  Use RDM (OPA) of MSG (IB) protocol 

§  Using fi_send/fi_recv 
•  For command fixed size channel 
•  Pre-post N (~6) recv buffers 
•  Re-post immediately on receive. 

§  Using fi_remote_write 
•  For meta-data/data exchanges 
•  Remote key/addr sent via command channel 
•  Using tag to match and notify received messages 

§  Using only one thread 
•  I’m not sure to completely understand how to use more threads  

(but I didn’t tried yet). 
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ABOUT FAILURE RECOVERY  
OPEN QUESTIONS (TO ME) 

§  With libfabric 
•  How are we notified of a node failure ? 
•  Can we re-setup the connection ? 
•  Mostly an open question for RDM PSM mode ? 

§  Can we lose messages ? 
•  In theory we don’t need to care at our level 

§  Internal software side status 
• We need to stop pending connections 
•  Update internal status to pursue 
•  Be able to re-register the failed node 
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LIBFABRIC & LAUNCHER 

§ We need to share addresses 

§  I use mpich hydra launcher 
•  MPI like launching 
•  Support most supercomputer’s job manager 
•  Maybe issues for node failure recovery, to be checked. 

§  It is not so much code 
•  Could be interesting to point it in libfabric doc/examples (fabtest ?) 

§ Missing: 
•  Some interface files are missing in hydra package 
•  Need to extract the hdyra-simple part from mpich 
•  Or missing doc to use it ? 
•  It’s using V1 API 
•  If I understand mpich use V2 API, how to use it outside of mpich ? 
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EXPERIMENTAL RESULTS 
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CPU MEMORY BANDWIDTH 
STREAM BENCHMARK ON BI-XEON E5-2690 
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SIMPLE BENCHMARKS OVER IB-EDR 
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DAQPIPE OVER IB 

84.63	
  

89.2	
  

65.77	
  

0	
   10	
   20	
   30	
   40	
   50	
   60	
   70	
   80	
   90	
   100	
  

V2-­‐one-­‐way-­‐2-­‐PPN	
  

V2-­‐one-­‐way-­‐1-­‐PPN	
  

V2	
  

Bandwidth	
  (Gb/s)	
  

DAQPIPE	
  results	
  	
  (14	
  nodes)	
  

IB-­‐MPI	
  



OpenFabrics Alliance Workshop 2016 

NUMBER OF ON-FLY MESSAGES 
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SCALABILITY ON EDR 
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SCALABILITY ON QDR 
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MONITORING FOR OPTIMIZATION 
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MONITORING COMMUNICATION SCHEDULING 
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MONITORING COMMUNICATION SCHEDULING 



OpenFabrics Alliance Workshop 2016 

CONCLUSION 
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CONCLUSION 

§ Performance 
• We need to achieve ~80-100 Gb/s 
• On IB EDR, also see 80 Gb/s, and sustained on 14 nodes. 
• How it will scale at 500 ? 

§ Libfabric 
• We succeed quite easily to use API on PSM : 

• Qlogick QDR 
•  Intel® Omni-Path  

•   Still have some issues to use on IB 
• Maybe init can be simplified ? 
• Plan to test failure recovery support soon 
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THANK YOU 
Sébastien Valat 
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REFS 

§  Code in use : 
• https://gitlab.cern.ch/svalat/lhcb-daqpipe-v2  
•  Used tag : bench-opa-2016-02 
•  Also see simpler benchmark in benchmarking/ubenchmark subdir 
•  Libfabric used : 1.1.0 and 1.2.0 
•  MPI : OpenMPI (with “-mca mtl psm2 -mca pml cm” for Intel® Omni-Path) 

§  Documents 
•  [1] LHCb Trigger and Online Upgrade Technical Design Report 

(https://cds.cern.ch/record/1701361?ln=en) 
•  [2] Current 128 node results from 

https://indico.cern.ch/event/382495/session/34/contribution/20/attachments/
1153728/1657396/Large-scale_DAQ_tests.pdf 


