
12th ANNUAL WORKSHOP 2016

PREPARING LHCB EVENT BUILDING AT 4TB/
S

Sébastien Valat

[April 7th, 2016]
CERN

OpenFabrics Alliance Workshop 2016

LHCB, THE USE CASE

2	

OpenFabrics Alliance Workshop 2016

REMINDER ON LHC

§  Accelerator of 27 km
§  10 000 superconductive magnets
§  Collision energy up to 14 TeV
§  Proton-Proton collisions, but also heavy-ions
§  4 BIG experiments :

•  ALICE, ATLAS, CMS, LHCb

3	

OpenFabrics Alliance Workshop 2016

LHCB, AN UPGRADE FOR 2018-2020

§  Update of sub-detectors
§  Removal of hardware trigger

•  Currently in custom FPGA
•  Hard to maintain and update
•  In radiation area

§  Filter farm will need to handle :
•  Larger event rate (1 Mhz to 40 Mhz)
•  Larger event size (50 KB to ~100 KB)

§ Much more data for DAQ & Trigger
§  It made 4 TB/s (32 Tb/s)

Detector	

Hardware	
 trigger	

DAQ	

Filter	
 units	
 :	

L0	
 Trigger	

High	
 Level	
 Trigger	

CERN	
 long	
 term	

storage	

Offline	
 physic	

analysis	

OpenFabrics Alliance Workshop 2016

WHY TRIGGERING ?

§ We cannot store all of the collisions !
• Far too much data !

§ Most collisions produce already well known physics

§ We keep only interesting events for new physics

§ Challenge for upgrade: need to trigger in software only
• Need to improve current software performance
• A factor of 100 (hardware + software)

§ For some costly functions
• Look at GPU
• Look at possible CPU embedded FPGA for some costly functions

OpenFabrics Alliance Workshop 2016

DATAFLOW

§  Numbers
•  ~10 000 optical links going out from

detector to the surface (~300 m) and
up to ~4.5 Gb/s each.

•  ~500 readout nodes
(up to 48 input links each)

•  Up 100 Gb/s incoming per node

§  Lead to a total of ~4 TB/s
•  Or 32 Tb/s

§  Need a 100 Gb/s network to
aggregate the data

§  All of this in real-time

Detector	

DAQ	
 network	

Event	
 building	

Readout	
 Units	

Filtering	
 Units	

~10000x
 ~300m

~ 500x

~ 3500x

OpenFabrics Alliance Workshop 2016

EVENT BUILDING NETWORK
EVALUATION

OpenFabrics Alliance Workshop 2016

COMMUNICATION PATTERN

§  Work with 4 units:
•  Readout unit (RU) to read data from PCI-E readout board
•  Event manager (EM) to dispatch the work over Builder unit (credits)
•  Builder unit (BU) to merge data from Readout unit and send to Filter unit.
•  Filter Unit (FU) to select the interesting collisions.

§  RU/BU mostly does a kind of “many gather”
•  To aggregate the data chunks from each collision

EM	

BU-­‐1	
 RU-­‐1	
 BU-­‐2	
 RU-­‐2	
 BU-­‐500	
 RU-­‐500	

Node	
 -­‐	
 1	

…	

FU-­‐1	

OpenFabrics Alliance Workshop 2016

IO NODES HARDWARE

§  Three IO boards at 100 Gb/s per node:
• PCI-40 for fiber input
• Event building network
• Output to filter farm

§  Also stress the memory (400 Gb/s of total traffic)

PCI-­‐40	
 PCI-­‐40	

DAQ	

network	

DAQ	

network	

FILTER	

network	

FILTER	

network	

CPU	
 CPU	
 CPU	
 CPU	

Buffer	
 Buffer	

Buffer	
 Buffer	

100	
 Gb/s	

100+100	
 Gb/s	

100	
 Gb/s	

OpenFabrics Alliance Workshop 2016

THE DAQ NETWORK TECHNOLOGIES

§ We need 100 Gb/s per node (RU/BU)
•  Some margins, 80 Gb/s might be fine

§  Not as HPC apps
• We need to fully fill the network continuously
•  Bad pattern : many all-gathers (all-to-all) !

§  Think of using a fat-tree topology

§  Technologies we looked on:
•  InfiniBand EDR
•  Intel® Omni-Path
•  100 Gb/s Ethernet

OpenFabrics Alliance Workshop 2016

INTERFACES TO EXPLOIT THEM

§  MPI
•  Support all networks
•  Optimized for IB/Intel® Omni-Path
•  How to support fault tolerance ?

•  We need to run 24h/24h and 7d/7

§  InfiniBand VERBS
•  For IB only
•  Low level
•  Might be OK for fault tolerance

§  Libfabric
•  For IB, Intel® Omni-Path, and TCP
•  Low level
•  Node failure and recovery support to be studied.

§  TCP/UPD (we don’t depend on latency)

OpenFabrics Alliance Workshop 2016

DAQPIPE

§  A benchmark to evaluate event building solutions

§  Three message size on the network
•  Command : ~64 B
•  Meta-data : ~10 KB
•  Data : ~1 MB

§  Manage communication scheduling models
•  Barrel shift ordering (with N on-fly)
•  Random ordering (with N on-fly)
•  Send all in one go

§  Support various APIs
•  MPI
•  TCP
•  Libfabric

OpenFabrics Alliance Workshop 2016

FIRST FEELING WITH LIBFABRIC AS USER

§  Lack of some simple (one file) example
•  Fabtest fine
•  but codes split in multiple functions and handle all cases

•  Good: we get something full to run
•  Less good: it took time to dig in to learn

§  Lack of beginner guide => (I started on 1.1.0rc2)
•  => Thanks to Jianxin Xiong

§  Easy to develop codes thanks to TCP support
• Write using TCP, then test over VERBS or PSM

OpenFabrics Alliance Workshop 2016

ONCE GOING THROUGH THE INIT STEP

§ Quite quickly to get running
• Using fi_send / fi_remote_write

§  I come from OS/HPC memory management PhD.
• So: not already an expert on fabrics
• Ok, I was in a thread-based MPI researching group
•  I did not previously know the app

§ Some rounded numbers
• ~1-2 week of sandbox playing
• ~1-2 week to get init running in my app
• ~3-4 days to get communications in place
• +X days of debugging (I also changed some other stuff)…..

OpenFabrics Alliance Workshop 2016

DUAL SUPPORT MSG / RDM

§  Yes it is managed by the same library
•  But different semantic.

§  In practice need to duplicate a big part of the code
•  At least the init

§  But also if statements for the communications
• Address vector VS. endpoints
• Different tagging approach (4 bytes vs 8 bytes)

§ Get some issues to see my IB board in fi_info
•  That’s my fault but (~3 days)…
• Not sure to completely understand the filtering mechanism

§  That’s fine, but I naively expected less diff

OpenFabrics Alliance Workshop 2016

MY LIBFABRIC USAGE

§  Use RDM (OPA) of MSG (IB) protocol

§  Using fi_send/fi_recv
•  For command fixed size channel
•  Pre-post N (~6) recv buffers
•  Re-post immediately on receive.

§  Using fi_remote_write
•  For meta-data/data exchanges
•  Remote key/addr sent via command channel
•  Using tag to match and notify received messages

§  Using only one thread
•  I’m not sure to completely understand how to use more threads

(but I didn’t tried yet).

OpenFabrics Alliance Workshop 2016

ABOUT FAILURE RECOVERY
OPEN QUESTIONS (TO ME)

§  With libfabric
•  How are we notified of a node failure ?
•  Can we re-setup the connection ?
•  Mostly an open question for RDM PSM mode ?

§  Can we lose messages ?
•  In theory we don’t need to care at our level

§  Internal software side status
• We need to stop pending connections
•  Update internal status to pursue
•  Be able to re-register the failed node

OpenFabrics Alliance Workshop 2016

LIBFABRIC & LAUNCHER

§ We need to share addresses

§  I use mpich hydra launcher
•  MPI like launching
•  Support most supercomputer’s job manager
•  Maybe issues for node failure recovery, to be checked.

§  It is not so much code
•  Could be interesting to point it in libfabric doc/examples (fabtest ?)

§ Missing:
•  Some interface files are missing in hydra package
•  Need to extract the hdyra-simple part from mpich
•  Or missing doc to use it ?
•  It’s using V1 API
•  If I understand mpich use V2 API, how to use it outside of mpich ?

OpenFabrics Alliance Workshop 2016

EXPERIMENTAL RESULTS

OpenFabrics Alliance Workshop 2016

CPU MEMORY BANDWIDTH
STREAM BENCHMARK ON BI-XEON E5-2690

0	

100	

200	

300	

400	

500	

600	

700	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	
 24	
 25	
 26	
 27	
 28	

Ba
nd

iw
dt
h	

(G
b/
s)
	

Cores	
 in	
 use	

2	
 sockets	
 1	
 sockets	

OpenFabrics Alliance Workshop 2016

SIMPLE BENCHMARKS OVER IB-EDR

87.75	

89	

88.86	

88.84	

87.9	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

one-­‐to-­‐one	

many-­‐to-­‐one	

gather	

gatherCmd	

GatherCmdMeta	

Bandiwdth	
 (Gb/s)	

Synthe7c	
 benchmarks	
 on	
 14	
 nodes	

EDR-­‐16-­‐onfly	

OpenFabrics Alliance Workshop 2016

DAQPIPE OVER IB

84.63	

89.2	

65.77	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

V2-­‐one-­‐way-­‐2-­‐PPN	

V2-­‐one-­‐way-­‐1-­‐PPN	

V2	

Bandwidth	
 (Gb/s)	

DAQPIPE	
 results	
 	
 (14	
 nodes)	

IB-­‐MPI	

OpenFabrics Alliance Workshop 2016

NUMBER OF ON-FLY MESSAGES

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

16	
 20	
 24	
 28	
 32	
 40	
 48	
 56	
 64	

Ba
nd

iw
dt
h	

(G
b/
s)
	

On-­‐fly	
 messages	
 (per	
 process)	

OpenFabrics Alliance Workshop 2016

SCALABILITY ON EDR

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

3	
 4	
 6	
 8	
 12	
 14	

Ba
nd

iw
dt
h	

(G
b/
s)
	

Nodes	

OpenFabrics Alliance Workshop 2016

SCALABILITY ON QDR

0	

5	

10	

15	

20	

25	

0	
 20	
 40	
 60	
 80	
 100	
 120	
 140	

RU
	
 B
an

dw
id
th
	
 (G

b/
s)
	

Nodes	

OSU	

V2	

V1	

LSEB	

V2-­‐no-­‐EM	

Gallileo supercomputer

OpenFabrics Alliance Workshop 2016

MONITORING FOR OPTIMIZATION

OpenFabrics Alliance Workshop 2016

MONITORING COMMUNICATION SCHEDULING

OpenFabrics Alliance Workshop 2016

MONITORING COMMUNICATION SCHEDULING

OpenFabrics Alliance Workshop 2016

CONCLUSION

OpenFabrics Alliance Workshop 2016

CONCLUSION

§ Performance
• We need to achieve ~80-100 Gb/s
• On IB EDR, also see 80 Gb/s, and sustained on 14 nodes.
• How it will scale at 500 ?

§ Libfabric
• We succeed quite easily to use API on PSM :

• Qlogick QDR
•  Intel® Omni-Path

•  Still have some issues to use on IB
• Maybe init can be simplified ?
• Plan to test failure recovery support soon

12th ANNUAL WORKSHOP 2016

THANK YOU
Sébastien Valat

 CERN

OpenFabrics Alliance Workshop 2016

REFS

§  Code in use :
• https://gitlab.cern.ch/svalat/lhcb-daqpipe-v2
•  Used tag : bench-opa-2016-02
•  Also see simpler benchmark in benchmarking/ubenchmark subdir
•  Libfabric used : 1.1.0 and 1.2.0
•  MPI : OpenMPI (with “-mca mtl psm2 -mca pml cm” for Intel® Omni-Path)

§  Documents
•  [1] LHCb Trigger and Online Upgrade Technical Design Report

(https://cds.cern.ch/record/1701361?ln=en)
•  [2] Current 128 node results from

https://indico.cern.ch/event/382495/session/34/contribution/20/attachments/
1153728/1657396/Large-scale_DAQ_tests.pdf

