

13th ANNUAL WORKSHOP 2017

## BUILDING A BLOCK STORAGE APPLICATION ON OFED - CHALLENGES

Subhojit Roy, Tej Parkash, Jeetendra R Sonar, Storage Engineering

[March 28<sup>th</sup>, 2017]



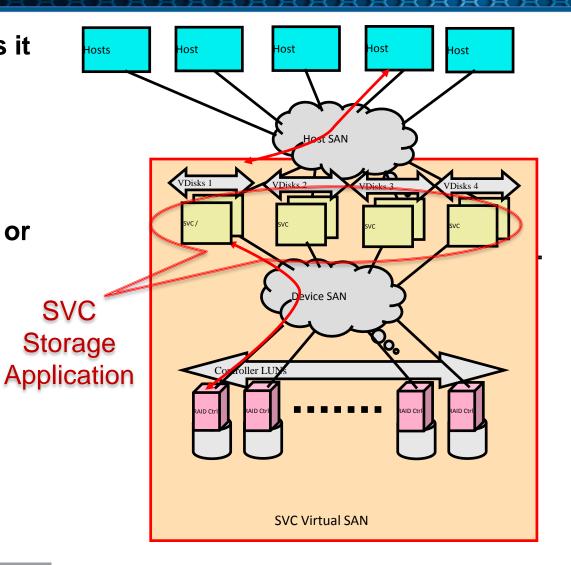
## AGENDA

#### **Introduction**

- Setting the Context (SVC as Storage Virtualizer)
- SVC Software Architecture overview

### **Challenges**

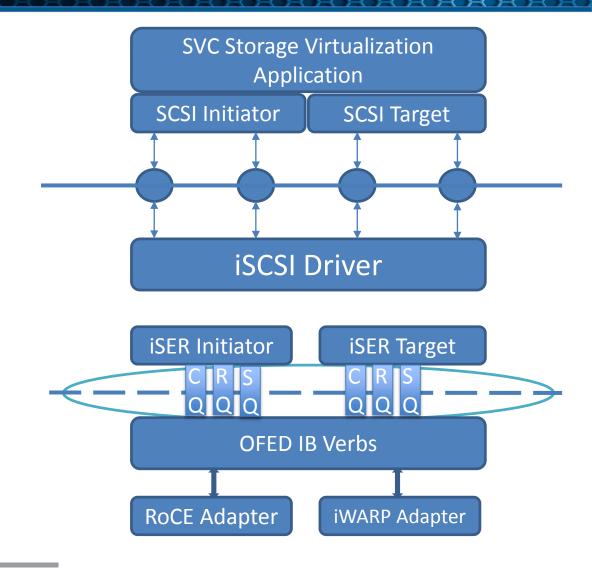
- Queue Pair states
- RDMA disconnect behavior
- RDMA connection management
- Query and modify Queue Pair attributes
- Large DMA memory allocation
- Query Device List
- Conclusion






OpenFabrics Alliance Workshop 2017

## SETTING THE CONTEXT (SVC AS STORAGE VIRTUALIZER)


- SVC pools heterogenous storage and virtualizes it for the host
- iSER Target for Host
- iSER Initiator for Storage Controller (FLASH or HDD)
- Clustered over iSER for high availability
- Supports both RoCE and iWARP
- Supports 10/25/40/50/100G bandwidths



## **SVC ARCHITECTURE OVERVIEW**

#### **Architecture characteristics**

- SVC application runs in user space
- iSER and iSCSI drivers in kernel space
- Lockless architecture (Per CPU port handling)
- Polled mode IO handling
- Supports RoCE and iWARP
- Vendor Independent (Mellanox, Chelsio, Qlogic, Broadcom, Intel etc.)
- Dependence on OFED kernel IB Verbs







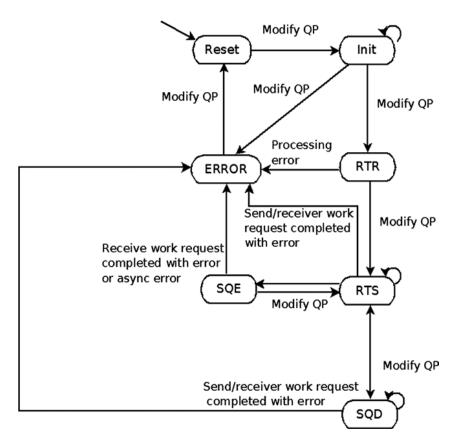
OpenFabrics Alliance Workshop 2017

## **QUEUE PAIR STATES**

#### Goal

Control number of retries and retry timeout during network outage

#### Actual behavior


 State transition differs across RoCE and iWARP e.g iWARP does not support SQD state

#### Expectation

- Transition QP to SQD state to modify QP attributes
- ib\_modify\_qp() must transition QP states as per state diagram shown
- All state transition must be supported by both RoCE and iWARP

#### Work Around

- No work around found
- Exploring vendor specific possibilities

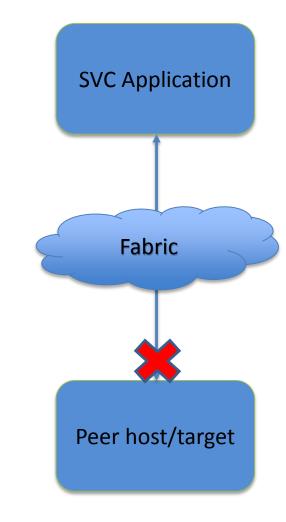


Referenced from book "Linux Kernel Networking - Implementation and Theory"

## **RDMA DISCONNECT BEHAVIOR**

- Goal/Observation
  - QP cannot be freed before RDMA\_CM\_EVENT\_DISCONNECTED event is received
  - There is no control over the timeout period for this event

#### Actual behavior


- Link down on peer system causes DISCONNECT event to be received after long delay
  - RoCE: ~100 Sec
  - iWARP: ~70 Sec
- There is no standard mechanism (verb) to control these timeouts

#### Expectation

- RDMA disconnect event must exhibit uniform timeout across RoCE and iWARP
- Timeout period for disconnect must be configurable

#### Work Around

Evaluating vendor specific mechanism to tune CM timeout

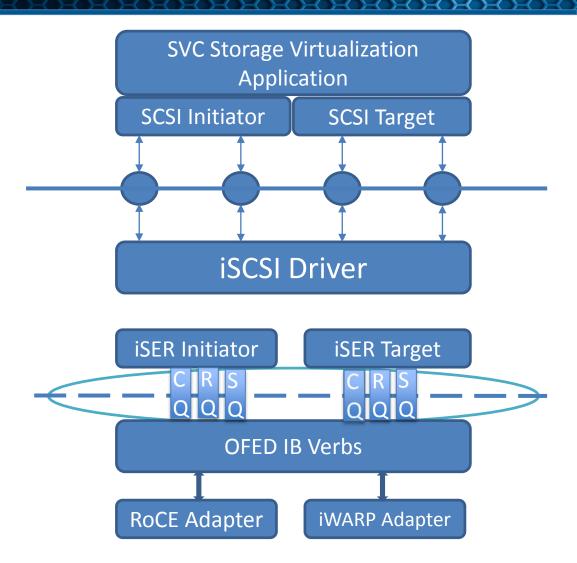


## **RDMA CONNECTION MANAGEMENT**

#### Goal

• Polled mode data path and Connection Management

#### Current mechanism


- No mechanism to poll for CM events. All RDMA CM events are interrupt driven
- Current implementation involves deferring CM events to Linux workqueues
- Application has no control over which CPU to POLL CM events from

#### Expectation

Queues for CM event handling

#### Work Around

Usage of locks add to IO latency



## LARGE DMA MEMORY ALLOCATION

#### Observation

- Allocation of large chunks DMAable memory during session establishment fails
- SVC reserves majority of physical memory during system initialization for caching

#### Current mechanism

IB Verbs use kmalloc() to allocate DMAable memory for all the queues

#### Expectation

- IB Verbs must provide a means to allocate DMA-able memory from pre-allocated memory pool. e.g. in the following
  - ib\_alloc\_cq()
  - ib\_create\_qp()

#### Work Around Solutions

 Modified iWARP and RoCE driver to use pre-allocated memory pools from SVC

| Туре | Elements | Size | Total Size(KB) |
|------|----------|------|----------------|
| SQ   | 2064     | 88   | ~177КВ         |
| RQ   | 2064     | 32   | ~64KB          |
| CQ   | 2064     | 32   | ~64KB          |

Single Connection Memory requirement in Linux OFED Stack = ~297KB

## **OUERY AND MODIFY QUEUE PAIR ATTRIBUTES**

#### Goal/Observation

Query and set QP parameters to control error recovery behavior

#### Actual behavior

- Unable to get and set QP parameters
- iWARP does not support modify/query of all parameters defined in ib\_qp\_attr() e.g. field rnr\_retry

#### Expectations

- ib\_query\_qp() and ib\_modify\_qp() should behave as documented
- If QP parameters are specific to iWARP or RoCE, they must be documented

#### Work Around Solutions

Evaluating vendor specific possibilities

| enum ib_mtu       | path_mtu;                       |
|-------------------|---------------------------------|
| enum ib_mig_state | <pre>path_mig_state;</pre>      |
| u32               | qkey;                           |
| u32               | rq_psn;                         |
| u32               | sq_psn;                         |
| u32               | dest_qp_num;                    |
| int               | <pre>qp access_flags;</pre>     |
| struct ib_qp_cap  | cap;                            |
|                   | ah_attr;                        |
| struct ib ah attr | <pre>alt_ah_attr;</pre>         |
| u16               | pkey_index;                     |
| u16               | <pre>alt_pkey_index;</pre>      |
| u8                | <pre>en_sqd_async_notify;</pre> |
| u8                | <pre>sq_draining;</pre>         |
| u8                | <pre>max_rd_atomic;</pre>       |
| u8                | <pre>max_dest_rd_atomic;</pre>  |
| u8                | <pre>min_rnr_timer;</pre>       |
| u8                | port_num;                       |
| u8                | timeout;                        |
| u8                | retry_cnt;                      |
| u8                | <pre>rnr_retry;</pre>           |
| u8                | <pre>alt_port_num;</pre>        |
| u8                | <pre>alt_timeout;</pre>         |
| u32               | rate_limit;                     |

#### Referenced from: Linux Kernel

## **QUERY DEVICE LIST**

#### Observation

- No kernel verb to find list of rdma devices on system until RDMA session is established
- Per device resource allocation during kernel module initialization

#### Current mechanism

RDMA device available only after connection request is established by CM event handler

#### Expectation

• Need verb equivalent to ibv\_get\_device\_list() in kernel IB Verbs

#### Work Around

Complicates per port resource allocation during initialization

## CONCLUSION

- Initial indications of IO performance compared to FC excellent!
- iSER presents an opportunity for high performance Flash based Ethernet data center
- Error recovery and handling is troublesome
- Mass adoption by storage vendors requires more work in OFED
  - IB Verbs is not completely protocol independent
  - Proper documentation of RoCE vs iWARP specific differences
  - Definitive resource allocation timeout values (R\_A\_TOV equivalent in FC)
- Same requirements applicable to NVMef
- Seeking right forum to address these requirements



13th ANNUAL WORKSHOP 2017

# **THANK YOU**

subhojit.roy@in.ibm.com, tprakash@in.ibm.com, jeesonar@in.ibm.com

[March 28<sup>th</sup>, 2017]





# BACKUP SLIDES

OpenFabrics Alliance Workshop 2017

## FC V/S ISER LATENCY PERFORMANCE

| IO Size   | FC Latency (milliseconds) | iSER Latency (milliseconds) |
|-----------|---------------------------|-----------------------------|
| Read_4k   | 0.107                     | 0.072                       |
| Write_4k  | 0.185                     | 0.222                       |
| Read_32k  | 0.121                     | 0.100                       |
| Write_32k | 0.224                     | 0.267                       |
| Read_64k  | 0.183                     | 0.150                       |
| Write_64k | 0.299                     | 0.342                       |