BUILDING A BLOCK STORAGE APPLICATION ON OFED - CHALLENGES

Subhojit Roy, Tej Parkash, Jeetendra R Sonar, Storage Engineering

[March 28th, 2017]
AGENDA

Introduction
- Setting the Context (SVC as Storage Virtualizer)
- SVC Software Architecture overview

Challenges
- Queue Pair states
- RDMA disconnect behavior
- RDMA connection management
- Query and modify Queue Pair attributes
- Large DMA memory allocation
- Query Device List
- Conclusion
INTRODUCTION
• SVC pools heterogenous storage and virtualizes it for the host

• iSER Target for Host

• iSER Initiator for Storage Controller (FLASH or HDD)

• Clustered over iSER for high availability

• Supports both RoCE and iWARP

• Supports 10/25/40/50/100G bandwidths
SVC ARCHITECTURE OVERVIEW

Architecture characteristics

- SVC application runs in user space
- iSER and iSCSI drivers in kernel space
- Lockless architecture (Per CPU port handling)
- Polled mode IO handling
- Supports RoCE and iWARP
- Vendor Independent (Mellanox, Chelsio, Qlogic, Broadcom, Intel etc.)
- Dependence on OFED kernel IB Verbs
CHALLENGES
Goal
- Control number of retries and retry timeout during network outage

Actual behavior
- State transition differs across RoCE and iWARP e.g. iWARP does not support SQD state

Expectation
- Transition QP to SQD state to modify QP attributes
- `ib_modify_qp()` must transition QP states as per state diagram shown
- All state transition must be supported by both RoCE and iWARP

Work Around
- No work around found
- Exploring vendor specific possibilities

Referenced from book “Linux Kernel Networking - Implementation and Theory”
RDMA DISCONNECT BEHAVIOR

- **Goal/Observation**
 - QP cannot be freed before `RDMA_CM_EVENT_DISCONNECTED` event is received
 - There is no control over the timeout period for this event

- **Actual behavior**
 - Link down on peer system causes DISCONNECT event to be received after long delay
 - RoCE: ~100 Sec
 - iWARP: ~70 Sec
 - There is no standard mechanism (verb) to control these timeouts

- **Expectation**
 - RDMA disconnect event must exhibit uniform timeout across RoCE and iWARP
 - Timeout period for disconnect must be configurable

- **Work Around**
 - Evaluating vendor specific mechanism to tune CM timeout
RDMA CONNECTION MANAGEMENT

- **Goal**
 - Polled mode data path and Connection Management

- **Current mechanism**
 - No mechanism to poll for CM events. All RDMA CM events are interrupt driven
 - Current implementation involves deferring CM events to Linux workqueues
 - Application has no control over which CPU to POLL CM events from

- **Expectation**
 - Queues for CM event handling

- **Work Around**
 - Usage of locks add to IO latency
Observation
- Allocation of large chunks DMAable memory during session establishment fails
- SVC reserves majority of physical memory during system initialization for caching

Current mechanism
- IB Verbs use `kmalloc()` to allocate DMAable memory for all the queues

Expectation
- IB Verbs must provide a means to allocate DMA-able memory from pre-allocated memory pool. e.g. in the following
 - `ib_alloc_cq()`
 - `ib_create_qp()`

Work Around Solutions
- Modified iWARP and RoCE driver to use pre-allocated memory pools from SVC

<table>
<thead>
<tr>
<th>Type</th>
<th>Elements</th>
<th>Size</th>
<th>Total Size(KB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQ</td>
<td>2064</td>
<td>88</td>
<td>~177KB</td>
</tr>
<tr>
<td>RQ</td>
<td>2064</td>
<td>32</td>
<td>~64KB</td>
</tr>
<tr>
<td>CQ</td>
<td>2064</td>
<td>32</td>
<td>~64KB</td>
</tr>
</tbody>
</table>

Single Connection Memory requirement in Linux OFED Stack = ~297KB
QUERY AND MODIFY QUEUE PAIR ATTRIBUTES

□ Goal/Observation
 • Query and set QP parameters to control error recovery behavior

□ Actual behavior
 • Unable to get and set QP parameters
 • iWARP does not support modify/query of all parameters defined in ib_qp_attr() e.g. field rnr_retry

□ Expectations
 • ib_query_qp() and ib_modify_qp() should behave as documented
 • If QP parameters are specific to iWARP or RoCE, they must be documented

□ Work Around Solutions
 • Evaluating vendor specific possibilities

Referenced from: Linux Kernel
QUERY DEVICE LIST

- **Observation**
 - No kernel verb to find list of rdma devices on system until RDMA session is established
 - Per device resource allocation during kernel module initialization

- **Current mechanism**
 - RDMA device available only after connection request is established by CM event handler

- **Expectation**
 - Need verb equivalent to `ibv_get_device_list()` in kernel IB Verbs

- **Work Around**
 - Complicates per port resource allocation during initialization
CONCLUSION

- Initial indications of IO performance compared to FC – excellent!
- iSER presents an opportunity for high performance Flash based Ethernet data center
- Error recovery and handling is troublesome
- Mass adoption by storage vendors requires more work in OFED
 - IB Verbs is not completely protocol independent
 - Proper documentation of RoCE vs iWARP specific differences
 - Definitive resource allocation timeout values (R_A_TOV equivalent in FC)
- Same requirements applicable to NVMef
- Seeking right forum to address these requirements
13th ANNUAL WORKSHOP 2017

THANK YOU

subhojit.roy@in.ibm.com, tprakash@in.ibm.com, jeezonar@in.ibm.com

[March 28th, 2017]

IBM
BACKUP SLIDES
FC V/S ISER LATENCY PERFORMANCE

<table>
<thead>
<tr>
<th>IO Size</th>
<th>FC Latency (milliseconds)</th>
<th>iSER Latency (milliseconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read_4k</td>
<td>0.107</td>
<td>0.072</td>
</tr>
<tr>
<td>Write_4k</td>
<td>0.185</td>
<td>0.222</td>
</tr>
<tr>
<td>Read_32k</td>
<td>0.121</td>
<td>0.100</td>
</tr>
<tr>
<td>Write_32k</td>
<td>0.224</td>
<td>0.267</td>
</tr>
<tr>
<td>Read_64k</td>
<td>0.183</td>
<td>0.150</td>
</tr>
<tr>
<td>Write_64k</td>
<td>0.299</td>
<td>0.342</td>
</tr>
</tbody>
</table>