VMWARE PARAVIRTUAL RDMA
DEVELOPER PERSPECTIVE

Adit Ranadive, Aditya Sarwade, Jorgen Hansen, Bryan Tan, Shelley Gong, George Zhang,
Na Zhang, Josh Simons

VMware, Inc.
[28th March, 2017]
AGENDA

- Overview of Paravirtual RDMA Device
- Device development process
- Challenges for device development and upstreaming
- Passthrough RDMA Updates
- Conclusion/Future Work
PVRDMA DEVICE

- **Paravirtual RDMA (PVRDMA)** is a new PCIe virtual NIC
 - A network interface (VMXNet3)
 - An RDMA provider (RoCE)
 - RDMA provider plugs in to the OFED stack
 - Verbs-level emulation
 - In kernel and user-space

- **ESX**
 - Leverage native RDMA stack
 - Physical HCA services all VMs

- Uses HCA for performance, but works without it

- Virtual devices can share an HCA without SR-IOV

- Supports vMotion (live migration)!
PVRDMA ARCHITECTURE

- PVRDMA exposes virtual resources to VM
 - E.g., PD, CQ, QP, MR

- ESX creates corresponding HW resources

- Guest memory regions are registered as host physical addresses in HW
 - Work Requests (WRs) are queued on vQPs
 - PVRDMA backend posts these WRs on to corresponding QPs opened in the ESXi RDMA stack
 - HCA performs DMAs to/from application memory without any SW involvement
 - Enables direct zero-copy data transfers in HW!
CURRENT STATUS

- **PVRDMA Device released as part of vSphere 6.5**
 - ESXi hypervisor + Virtual Center Management Platform + Virtual Networking Management
 - Supports RoCEv1
 - RC, UD QPs

- **Linux Driver**
 - Included in 4.10
 - OFED 4.8 RC1 (as tech preview)

- **User-space Library**
 - rdma-core-13
 - OFED 4.8 RC1
DEVELOPING PVRDMA DEVICE

- RDMA APIs (though numerous) are well-defined!
 - Both user-level and kernel are similar

- VM Compatibility is a big priority at VMware!
 - Virtual Devices expected to work when the VM is moved to a different host without an HCA
 - Has to work with virtualization features - vMotion, Snapshots

- 3 Devices/Transports
 - Memory copy - VMs on same host
 - HW RDMA – VMs have access to HCAs
 - TCP Emulation – Either VM peer has no HCA

- Enforce consistent RDMA behavior between transports
 - Completely hidden from guest software
 - Interoperate QPs between transports
 - Testing scenarios increase
DEVICE DEVELOPMENT CHALLENGES

- **Putting 3 devices together**
 - Started with the Memcpy/TCP modes
 - Limited to APIs in virtualization environment
 - Physical HCA support was added later to ESX
 - Special ULP to VMkernel RDMA

- **What is consistent RDMA behavior?**
 - Differences between IB specification and existing RDMA NIC behavior
 - How do you test IB spec compliance or OFED compliance?
 - Standardized compliance tests from OFIWG?
 - Important from a testing perspective – what are your expected results/failures?

- **Memory Regions**
 - Emulated user MR support (when there was no physical support)
 - Physical MRs added to the ESX device driver to support remote read/write (user MRs)
 - No support for DMA MRs with remote read/write
DEVICE DEVELOPMENT CHALLENGES

- **Unreliable Datagram**
 - Receives from multiple transports
 - No way to un-enqueue a WQE
 - Post “bounce buffers” on physical HCA – copy to guest buffers

- **vMotion support**
 - Partial - VM has to be stopped at the end of a posted WR
 - Cannot communicate with native host
 - Need hardware support to perform this gracefully
 - Create specific resource identifiers
 - Suspend/Resume of Queue Pairs

- **Stuck at RoCEv1**
 - RoCEv2 wasn't finalized till closer to our release date
 - Not enough support in distros as yet for RoCEv2

- **Harder to release device updates**
 - Ensure VM compatibility through virtual hardware versioning
 - Cannot just release device firmware updates
GUEST SOFTWARE DEVELOPMENT CHALLENGES

- **OFED in guests**
 - Separate driver/library repositories
 - Compatible with distro/OFED – Didn’t want to deal with changing upstream code
 - Dev and Test environment was same to test more easily

- **First experiences with upstreaming**
 - Not just driver but user-space as well
 - Learning experience!
 - Awesome to see the “Applied” message from Doug!

- **OFED/Kernel changes**
 - ABI changes
 - Keep updated with other API changes
 - Addition of rdma-core

- **Integration with OFED 4.8**
 - Slightly different process than upstreaming – Tech preview

- **Driver versioning**
 - Keep track of fixes and changes to driver/library
WEATHER RESEARCH & FORECASTING (WRF)

VMDirectPath I/O Technology

Test Cluster Configuration:
- 32-node Cluster
- Dell PowerEdge C6320
- Dual 10-core Haswell
- 128GB RAM
- 100Gb/s EDR InfiniBand
- ESX 6.5

VM Configuration:
- 1 VM per host
- 20 vCPUs
- 100GB RAM

Native to Virtual Ratios
(Higher is better)
EmpHydroCyclone_30M VtmUhoodFanHeatx68m

Performance Ratios

Native to Virtual Ratios (Higher is better)
atomic fluid bead-spring polymer

Performance Ratios

Native to Virtual Ratios (Higher is better)
Performance Ratios

stmv

Native to Virtual Ratios (Higher is better)
CONCLUSIONS/FUTURE WORK

- Driver/Library for VMware’s PVRDMA device added to 4.10 kernel and OFED 4.8 RC1
- Some unique challenges for a paravirtual RDMA provider
- Overall great experience to work with open source and OFED community
- Looking at adding RoCEv2, Shared Receive Queues to PVRDMA
- RDMA is gaining more importance in virtualization settings
 - Paravirtualization is one aspect
 - HCA vMotion support to talk to native hosts
- Passthrough RDMA performance is pushing closer to native
 - Hardware virtualization support keeps getting better
THANK YOU

Adit Ranadive [aditr@vmware.com]

VMware, Inc.