
13th ANNUAL WORKSHOP 2017

Asynchronous Peer-to-Peer Device Communication
Feras Daoud, Leon Romanovsky

[28 March, 2017]

OpenFabrics Alliance Workshop 2017

Agenda

Peer-to-Peer communication

PeerDirect technology

PeerDirect and PeerDirect Async

Performance

Upstream work

OpenFabrics Alliance Workshop 2017

Peer-to-Peer Communication

3

OpenFabrics Alliance Workshop 2017

Peer-to-Peer Communication

“Direct data transfer between PCI-E devices
without the need to use main memory as a
temporary storage or use of the CPU for
moving data.”
Main advantages:

• Allow direct data transfer between devices

• Control the peers directly from other peer devices

• Accelerate transfers between different PCI-E
devices

• Improve latency, system throughput, CPU
utilization, energy usage

• Cut out the middleman

OpenFabrics Alliance Workshop 2017

PeerDirect Technology

5

OpenFabrics Alliance Workshop 2017

Timeline

OpenFabrics Alliance Workshop 2017

Prior To GPUDirect

GPUs use driver-allocated pinned
memory buffers for transfers
 RDMA driver use pinned buffers for

zero-copy kernel-bypass
communication
 It was impossible for RDMA drivers

to pin memory allocated by the GPU
 Userspace needed to copy data

between the GPU driver’s system
memory region and the RDMA
memory region

CPU Memory

CPU

GPU

GPU Memory

011001100110100110011
001000011111010

Data

Chips
et

2 1

OpenFabrics Alliance Workshop 2017

GPUDirect/GPUDirect P2P

GPU and RDMA device share the
same “pinned” buffers
GPU copies the data to system

memory
 RDMA device sends it from there

 Advantages
• Eliminate the need to make a redundant copy

in CUDA host memory

• Eliminate CPU bandwidth and latency
bottlenecks

8

CPU Memory

CPU

GPU

GPU Memory

Chips
et

1

011001100110100110
011001000011111010

Data

OpenFabrics Alliance Workshop 2017

GPUDirect RDMA/PeerDirect

CPU synchronizes between GPU
tasks and data transfer
HCA directly accesses GPU

memory

Advantages
•Direct path for data exchange
•Eliminate the need to make a
redundant copy in host memory

9

CPU Memory

CPU

GPU

GPU Memory

Chips
et

011001100110100110
011001000011111010

Data

OpenFabrics Alliance Workshop 2017

GPUDirect RDMA/PeerDirect

while(fin) {
gpu_kernel <<<… , stream>>>(buf);
cudaStreamSynchronize(stream);
ibv_post_send(buf);
ibv_poll_cq(cqe);

}

10

GPU CPU HCA

CPU Utilization

OpenFabrics Alliance Workshop 2017

GPUDirect Async/PeerDirect Async

 Control the HCA from the GPU
• Performance

• Enable batching of multiple GPU and
communication tasks

• Reduce latency

• Reduce CPU utilization
• Light weight CPU
• Less power

 CPU prepares and queues compute and
communication tasks on GPU
 GPU triggers communication on HCA
 HCA directly accesses GPU memory

11

CPU Memory

CPU

GPU

GPU Memory

Chip
set

011001100110100110
011001000011111010

Data

OpenFabrics Alliance Workshop 2017

GPUDirect Async/PeerDirect Async

while(fin) {
gpu_kernel <<<… , stream>>>(buf);
gds_stream_queue_send(stream, qp, buf);
gds_stream_wait_cq(stream, cqe);

}

12

GPU CPU HCA

CPU is free

OpenFabrics Alliance Workshop 2017

Peer-to-Peer Evolution

• Eliminate the need to make a redundant copy in
CUDA host memory

• Eliminate CPU bandwidth and latency bottlenecks
GPUDirect

• Eliminate the need to make a redundant copy in host
memory

• Direct path for data exchange
PeerDirect

• Control RDMA device from the GPU
• Reduce CPU utilizationPeerDirect Async

OpenFabrics Alliance Workshop 2017

PeerDirect

14

OpenFabrics Alliance Workshop 2017

PeerDirect

Allow ibv_reg_mr() to register peer memory

Peer devices implement new kernel module – io_peer_mem

Register with RDMA subsystem - ib_register_peer_memory_client()

 io_peer_mem implements the following callbacks :
• acquire() – detects whether a virtual memory range belongs to the peer
• get_pages() – asks the peer for the physical memory addresses matching the memory region
• dma_map() – requests the bus addresses for the memory region
• Matching callbacks for release: dma_unmap(), put_pages() and release()

How Does It Work?

15

OpenFabrics Alliance Workshop 2017

PeerDirect
Memory Region Registration

HCAUser-space Verbs App RDMA Subsystem Peer Client Peer Device

ibv_reg_mr()
(a) acquire()

mine!

(b) get_pages()
Pin Peer Pages

Physical Pages

dma_map()

DMA addresses
Register MR

ibv_reg_mr() Success

Use MR for
PeerDirect

OpenFabrics Alliance Workshop 2017

PeerDirect Async

17

OpenFabrics Alliance Workshop 2017

PeerDirect Async

 Allows for peer devices to control the network card
• RDMA NIC provides a bytecode sequence to the peer
• Peer device executes bytecode to trigger sends or detect completions

 PeerDirect Async uses dedicated QPs and CQs
 PeerDirect Async operations

• Ibv_post_send() on a PeerDirect Async QP queues a set of operations to be triggered by peer
• ibv_peer_commit_qp() – Obtain bytecode for committing pending WQEs for execution
• ibv_peer_peek_cq() – Obtain bytecode for detecting a certain number of completions

 Device agnostic
• An network card that exports bytecode operations for post _send and poll_cq
• Any peer device that can execute the byte code

• GPUs, FPGAs, Storage controllers, etc.

How Does It Work?

18

OpenFabrics Alliance Workshop 2017

Transmit Operation

Create a QP ->
Mark it for PeerDirect Async ->

Associate it with the peer

1. Post work requests using ibv_post_send()
• Doorbell is not ringed

2. Use ibv_peer_commit_qp() to get
bytecode for committing all WQEs
currently posted to the send work queue

3. Queue the translated bytecode operations
on the peer

4. Peer executes the operations after
generating outgoing data

19

CPU

GPUHCA

(1)
Queue
Work

Request

(3)
Pass

Bytecode

(4)
Trigger send

using
Bytecode

(2)
Get byte

code

OpenFabrics Alliance Workshop 2017

Completion Handling

Create a CQ ->
Mark it for PeerDirect Async ->

Associate it with the peer

1. Use ibv_peer_peek_cq() to get bytecode
for peeking a CQ for a specific number of
completions

2. Queue the translated operations on the
peer before the operations that use the
received data

3. Synchronize the CPU with the peer to
insure that all the operations has ended

4. Use ibv_poll_cq() to consume the
completion entries

20

CPU

GPUHCA

(4)
Pass Poll
Bytecode

(2)
Peek for

Completion

(3)
Report for

finish

(1)
Reclaim

Completions

OpenFabrics Alliance Workshop 2017

Performance

21

OpenFabrics Alliance Workshop 2017

Performance mode

22

[*] modified ud_pingpong test: recv+GPU kernel+send on each side.
2 nodes: Ivy Bridge Xeon + K40 + Connect-IB + MLNX switch, 10000 iterations, message size: 128B, batch size: 20

OpenFabrics Alliance Workshop 2017

Economy Mode

23

[*] modified ud_pingpong test, HW same as in previous slide

25% less
latency

45% reduction
in CPU

utilization

OpenFabrics Alliance Workshop 2017

Upstream Work

24

OpenFabrics Alliance Workshop 2017

Peer-to-Peer – Upstream Proposals

Peer-to-Peer DMA
•Mapping DMA addresses of PCI device to IOVA of other device
ZONE_DEVICE
•Extend ZONE_DEVICE functionality to memory not cached by CPU
RDMA extension to DMA-BUF
•Allow memory region create from DMA-BUF file handle
IOPMEM
•A block device for PCI-E memory
Heterogeneous Memory Management (HMM)
•Common address space will allow migration of memory between
devices

13th ANNUAL WORKSHOP 2017

THANK YOU
Feras Daoud, Leon Romanovsky

	Asynchronous peer-to-peer device communication
	Agenda
	Peer-to-Peer Communication
	Peer-to-Peer Communication
	PeerDirect Technology
	Timeline
	Prior To GPUDirect
	GPUDirect/GPUDirect P2P
	GPUDirect RDMA/PeerDirect
	GPUDirect RDMA/PeerDirect
	GPUDirect Async/PeerDirect Async
	GPUDirect Async/PeerDirect Async
	Peer-to-Peer Evolution
	PeerDirect
	PeerDirect
	PeerDirect
	PeerDirect Async
	PeerDirect Async
	Transmit Operation
	Completion Handling
	Performance
	Performance mode
	Economy Mode
	Upstream Work
	Peer-to-Peer – Upstream Proposals
	THANK YOU

