
13th ANNUAL WORKSHOP 2017

ACCELERATING APACHE SPARK WITH RDMA
Yuval Degani, Sr. Manager, Big Data and Machine Learning

March 28th, 2017
Mellanox Technologies

OpenFabrics Alliance Workshop 2017

AGENDA

 Apache Spark 101
 The Potential in Accelerating Spark Shuffle
 Accelerating Spark Shuffle with RDMA – Deep Dive
 Results
 Roadmap

2

OpenFabrics Alliance Workshop 2017

APACHE SPARK 101

3

OpenFabrics Alliance Workshop 2017

APACHE SPARK 101
Spark within the Big Data ecosystem

4

OpenFabrics Alliance Workshop 2017

APACHE SPARK 101

 In a nutshell: Spark is a data analysis platform with implicit data parallelism and fault-
tolerance

 Initial release: May, 2014
 Originally developed at UC Berkeley’s AMPLab
 Donated as open source to the Apache Software Foundation
 Most active Apache open source project

 50% of production systems are in public clouds

 Notable users:

5

Quick facts

OpenFabrics Alliance Workshop 2017

APACHE SPARK 101

 The traditional Map-Reduce model is bound to an acyclic data flow from stable storage
to stable storage (e.g. HDFS)

But why?

6

Map

Map

Map

Reduce

Reduce

Map

Map

Map

Reduce

Reduce

OpenFabrics Alliance Workshop 2017

APACHE SPARK 101

 Some applications frequently reuse data, and don’t just digest it once:
• Iterative algorithms (e.g. machine learning, graphs)
• Interactive data-mining and streaming

 The acyclic data flow model becomes very inefficient when data gets repeatedly reused

 The solution: Resilient Distributed Datasets (RDDs)
• In-memory data representation
• The heart of Apache Spark
• Preserves and enhances the appealing properties

of Map-Reduce:
• Fault tolerance
• Data locality
• Scalability

7

But why?

Step Step Step

Step Step Step

OpenFabrics Alliance Workshop 2017

APACHE SPARK 101

 RDDs let us keep data within quick reach, in-memory
 But, cluster computing is all about moving data around the network!

 Data transfer over the network between stages of computation is what we call “Shuffle”

 So, we have memory-to-network-to-memory transfers: RDMA is a perfect fit!

8

“Everyday I'm Shuffling”

Step Step

OpenFabrics Alliance Workshop 2017

APACHE SPARK 101

Shuffling is the process of redistributing data across partitions (AKA repartitioning)

Shuffle Basics

9

Shuffle Write Shuffle ReadBroadcast block
locations1 2 3

Worker nodes write their intermediate data
blocks (Map output) into local storage, and

list the blocks by partition

The master node broadcasts a combined
list of blocks, grouped by partition

Each reduce partition fetches all of the
blocks listed under its partition – from

various nodes in the cluster

OpenFabrics Alliance Workshop 2017

THE POTENTIAL IN ACCELERATING SHUFFLE

10

OpenFabrics Alliance Workshop 2017

THE POTENTIAL IN ACCELERATING SHUFFLE

 Before setting off on the journey of adding RDMA to Spark, it was essential to estimate
the ROI of such work

 What’s better than a controlled experiment?

What’s the opportunity here?

11

Goal Quantify the potential performance gain in accelerating network
transfers

Method Bypass the network in Spark Shuffle and compare to the original:
No network = maximum performance gain

Step Step

OpenFabrics Alliance Workshop 2017

THE POTENTIAL IN ACCELERATING SHUFFLE

 General idea:
• Do not fetch blocks from the network, just reuse a local sampled block over and over
• No copying
• No message passing what so ever (for Shuffle)
• Everything else stays exactly the same! (no optimizations in Shuffle)
• Compare to TCP

Bypassing the network in Spark Shuffle

12

Phase TCP Shuffle Network bypass Shuffle
Worker node initialization Read sampled shuffle block from disk for reuse in Shuffle
On block fetch request Send request and wait for data to

come in to trigger completion
Immediately complete the block

fetch request
On block fetch request
completion

Drop incoming shuffle data block No op

Deliver shuffle block Duplicate (shallow copy) the sampled buffer from initialization and
publish (trim to desired size)

OpenFabrics Alliance Workshop 2017

THE POTENTIAL IN ACCELERATING SHUFFLE

 Benchmark:
• HiBench TeraSort
• Workload: 600GB

 Testbed:
• HDFS on Hadoop 2.6.0

• No replication
• Spark 2.0.0

• 1 Master
• 30 Workers
• 28 active Spark cores on each node, 840 total

• Node info:
• Intel Xeon E5-2697 v3 @ 2.60GHz
• 256GB RAM, 128GB of it reserved as RAMDISK
• RAMDISK is used for Spark local directories and HDFS

Testbed

13

OpenFabrics Alliance Workshop 2017

THE POTENTIAL IN ACCELERATING SHUFFLE

 TeraSort:
• Read unsorted data from HDFS
• Sort the data
• Write back sorted data to HDFS

 Workload:
• A collection of K-V pairs
• Keys are random

 Algorithm at high-level (all phases are distributed among all cores):
• Define the partitioner:

• Read random samples from HDFS and define balanced partitions of key ranges
• Partition (map) the data:

• Read data from HDFS, and group by partition, according to the partitions defined in #1 (Shuffle Write)
• Retrieve partitioned data (Shuffle Read)

• Sort the K-V pairs by key
• Write the sorted data to HDFS

TeraSort

10 2 32 484 4

Key Const Row ID Const Filler Const

OpenFabrics Alliance Workshop 2017

THE POTENTIAL IN ACCELERATING SHUFFLE
Results

Runtime samples Normal Network bypass Opportunity

Average 777 seconds 356 seconds 54%

Max 815 seconds 389 seconds 52%

Min 755 seconds 318 seconds 58%

15

54% 52%
58%

0

100

200

300

400

500

600

700

800

900

Average Min Max

TCP TeraSort vs. Network-bypass TeraSort

TCP
Network-Bypass

Lower is better

Huge
opportunity
for RDMA!

OpenFabrics Alliance Workshop 2017

ACCELERATING SHUFFLE WITH RDMA

16

OpenFabrics Alliance Workshop 2017

ACCELERATING SHUFFLE WITH RDMA

Challenges in adding RDMA to Spark Shuffle

 Spark is written in Java & Scala
• What RDMA API to use?
• Java’s Garbage Collection is a pain for managing low-level buffers

 RDMA connection establishment – how can we make connections as long lived as
possible?
 Spark’s Shuffle Write data is currently saved on the local disk. How can we make the

data available for RDMA?
 Must keep changes to Spark code to a minimum

• Spark is not very plug-in-able
• Spark keeps changing rapidly – API changes, implementation changes
• Maintain long term functionality

Challenges

17

OpenFabrics Alliance Workshop 2017

ACCELERATING SHUFFLE WITH RDMA

 RDMA API is available in Java through:
• JXIO-AccelIO – Abstract of RDMA through RPC (https://github.com/accelio/JXIO)
• DiSNi – Open-source release of IBM’s JVerbs – ibverbs like interface in Java (https://github.com/zrlio/disni)

• We have decided to go with DiSNi since it gives us more flexibility

 RDMA buffer management
• Centralized pool of buffers per worker node
• Pool consists of multiple stacks of different sizes (in powers of 2)
• Buffers are allocated off-heap and registered on demand
• When they are no longer in use – they are recycled back to the pool
• Survive for the length of a job (minutes)

 RDMA connection establishment
• For simplicity, couple each TCP connection with a corresponding RDMA connection
• RDMA is used for all block data transfers
• Survive for the length of a job (minutes)

RDMA Facilities – Design Notes

https://github.com/accelio/JXIO
https://github.com/zrlio/disni

OpenFabrics Alliance Workshop 2017

ACCELERATING SHUFFLE WITH RDMA

 The challenge – get the Shuffle data in memory, and register as a Memory Region

 We provide two modes:

Shuffle Write – Design Notes

19

Method In-memory File-mapping
Description Instead of saving Shuffle data to disk,

save it directly into RDMA buffers
Map Spark’s file on local disk to memory, and
register as a Memory Region

Pros • Faster and more consistent than file-
mapping unless low on system memory

• Less overhead for RDMA
• Simpler indexing (buffer-per-block)

• Minimal changes in Spark code
• Files are already in buffer-cache – mmap is

not expensive
• Comparable memory footprint to TCP
• No functional limitations

Cons • High memory footprint
• Many changes in Spark’s ShuffleWriters

and ShuffleSorters
• Limited functionality (Spills, low

memory)

• mmap() occasionally demonstrates latency
jitter

• Indexing – multiple blocks per file as in TCP

OpenFabrics Alliance Workshop 2017

Collect incoming blocks, call
completion handler per chunk

ACCELERATING SHUFFLE WITH RDMA

20

Shuffle Read Protocol in Spark

Requestor Responder

Lookup blocks (from mem/disk) and
setup a stream of blocks

Fetch: List of BlockIDs for a new
stream

Fetch Request RPC:
BlockID list

Send block fetch requests for each
block in the StreamID

Fetch Response RPC:
StreamID

Lookup block, and send data as RPC

Fetch Request RPC:
BlockID=y

Collect incoming blocks, call
completion handler per block

Fetch Response RPC:
Data for BlockID=y

TCP

OpenFabrics Alliance Workshop 2017

ACCELERATING SHUFFLE WITH RDMA

21

Shuffle Read Protocol in Spark

Requestor Responder

Lookup blocks (from mem/disk) and
setup a stream of blocks

Fetch: List of BlockIDs for a new
stream

Fetch Request RPC:
BlockID + Rkey +

vAddress list

RDMAWrite each local block to the
remote block

Call completion handler on all of the
blocks in the stream

RDMA
Allocate an RDMA buffer per block

Retrieve Lkey and vAddress of blocks

RDMAWrite per block

Last block in Stream: RDMAWrite with
Immediate to notify requestor of Stream

fetch completionRDMAWrite with
Immediate for last

block

OpenFabrics Alliance Workshop 2017

ACCELERATING SHUFFLE WITH RDMA

 N = Number of blocks

Shuffle Read: TCP vs. RDMA

22

TCP RDMA
Number of messages per
fetch

2(N+1) N+1

Number of copy operations
per block

Responder: 1 to 2 times
Requestor: 1 time

Total: 2 to 3 times

0-copy

OpenFabrics Alliance Workshop 2017

RESULTS

23

OpenFabrics Alliance Workshop 2017

RESULTS
In-house TeraSort Results

Testbed:
HiBench TeraSort

Workload: 300GB
HDFS on Hadoop 2.6.0

No replication
Spark 2.0.0

1 Master
14 Workers
28 active Spark cores on
each node, 392 total

Node info:
Intel Xeon E5-2697 v3 @
2.60GHz
RoCE 100GbE
256GB RAM
HDD is used for Spark local
directories and HDFS

24

18% 17%
17%

0

50

100

150

200

250

300

350

Average Min Max

TCP vs. RDMA

TCP
RDMA

Runtime samples TCP RDMA Improvement

Average 301 seconds 247 seconds 18%

Max 284 seconds 237 seconds 17%

Min 319 seconds 264 seconds 17%

Lower is better

OpenFabrics Alliance Workshop 2017

17%

15% 11%

0

20

40

60

80

100

120

140

160

Customer App #1 Customer App #2 HiBench TeraSort

TCP vs. RDMA

TCP
RDMA

RESULTS
Real-life Applications - Initial Results

25

Runtime samples TCP RDMA Improvement Input Size Nodes Cores per node RAM per node

Customer App #1 138 seconds 114 seconds 17% 5GB 14 24 85GB

Customer App #2 60 seconds 51 seconds 15% 270GB 14 24 85GB

HiBench TeraSort 66 seconds 59 seconds 11% 100GB 16 24 85GB

Lower is better

OpenFabrics Alliance Workshop 2017

ROADMAP

 Spark RDMA in GA expected in 2017
 Open-source Spark plugin
 Push to Spark upstream

What’s next?

26

13th ANNUAL WORKSHOP 2017

THANK YOU
Yuval Degani, Sr. Manager, Big Data and Machine Learning

Mellanox Technologies

	Accelerating Apache Spark with RDMA
	Agenda
	Apache spark 101
	Apache spark 101
	Apache spark 101
	Apache spark 101
	Apache spark 101
	Apache spark 101
	Apache spark 101
	The Potential in Accelerating Shuffle
	The Potential in Accelerating Shuffle
	The Potential in Accelerating Shuffle
	The Potential in Accelerating Shuffle
	The Potential in Accelerating Shuffle
	The Potential in Accelerating Shuffle
	Accelerating Shuffle with RDMA
	Accelerating Shuffle with RDMA
	Accelerating Shuffle with RDMA
	Accelerating Shuffle with RDMA
	Accelerating Shuffle with RDMA
	Accelerating Shuffle with RDMA
	Accelerating Shuffle with RDMA
	Results
	Results
	Results
	Roadmap
	THANK YOU

