(Vo
=
o
aa
m

ALLIANCE

i T N N T T Nl N T T T T T T T e

WA AN b A AAA A A
‘f\{f\({(T W W W W WA A

AAA AL A A A A A A
A A NAAAAA A A A

P s o A N W W W W
i e e e - M e e e P N e N N N N

PN N N b e e T T T VL L
O T L L e T PN T LW

T T T P S N
N N A A A A S T W WS

o e e N N e e N N N N N

L e e e L W W W

e e N R e Y T T

e N NI I T T P P T
AAAAAAAS AT

[W N Y Y oV S n RV

-
e Y T T T e W e W W W e

Y R ~

Big Data and Machine Learni

13" ANNUAL WORKSHOP 2017

Manager

Sr.

Yuval Degani

CCELERATING APACHE SPARK WITH

e e e e e e

BT A o F o N e ik <

A

[T e e e e e e L e S i

L Tt e e e e s e s e

[i e i i i sl i e i e e e

O e e e i e e s e s e e

P e e e e e e
PR gl gl g g Sl Sl S S g S S S S N
e e i sl i i il i i i i i s i e s s al
T i i N N
L i dl il dl il i dis il il di dis e al ale e di il
)\;\f\f\j\/}\f}\f\z}}}}}\; e
P e " e i dls i s d i sl s dle s
LN NN P e i e e e e e

March 28t 2017

Yili\\

Mellanox
TECHNOLOGIES

AGENDA

= Apache Spark 101

" The Potential in Accelerating Spark Shuffle

= Accelerating Spark Shuffle with RDMA — Deep Dive
" Results

= Roadmap

Mellanox SpQrK : 2 OpenFabrics Alliance Workshop 2017

P T s e e e e

I i e e BT T T
L W T Y W Y N N N N N NN N
Y Y Tt v o T S T T
I T {I._/_.\J_..\:x.\.f\ S
P i P i N N N N N e N N N N N
B Y T Y W W Y W W W W AW P

i T T T T T T P L L L

i S S N

OpenFabrics Alliance Workshop 2017

—
O
—
XX
<
al
)
L1l
ai i
<
am
<

H
F
=1

=9

=
=t

J"' e

Datawarehouse

Cassandra

1~f9:

HBRSE

APACHE SPARK 101

Spark within the Big Data ecosystem

Data Sources De_lt_a - Data Storage Data analysis R.e""r.“"g &
Acquisition visualization

Qﬁ%ﬁmiasa

mnERE=Ie=

,

Bl

Analysis

Spoﬂzz

cloudera

IMPALA

s
vwtableau

Spar

OpenFabrics Alliance Workshop 2017

APACHE SPARK 101

Quick facts

" |n anutshell: Spark is a data analysis platform with implicit data parallelism and fault-
tolerance

Initial release: May, 2014

= Originally developed at UC Berkeley’s AMPLab

Donated as open source to the Apache Software Foundation
= Most active Apache open source project

Spark

Notable USers: orAcLE Bioombery YAHOO! capirail, @Mazon BaiEm /) airbnb ERICSSON Z

50% of production systems are in public clouds

5 OpenFabrics Alliance Workshop 2017

APACHE SPARK 101

But why?

" The traditional Map-Reduce model is bound to an acyclic data flow from stable storage
to stable storage (e.g. HDFS)

M SpQ’% 6 OpenFabrics Alliance Workshop 2017

APACHE SPARK 101

But why?

S g S S S

L i e e e il il il
S e il i e il il il e
e e e e T

T e i e e e

= Some applications frequently reuse data, and don’t just digest it once:
* |terative algorithms (e.g. machine learning, graphs)
* Interactive data-mining and streaming

" The acyclic data flow model becomes very inefficient when data gets repeatedly reused

=" The solution: Resilient Distributed Datasets (RDDs)
* In-memory data representation
* The heart of Apache Spark

* Preserves and enhances the appealing properties R a » I a ¥ u
of Map-Reduce: 0100 N w w

S
 Fault tolerance ~—— ~—— N— N—
» Data locality
» Scalability .
Spark’ = R Rk =
N— N—

7 OpenFabrics Alliance Workshop 2017

K’

& Spo

APACHE SPARK 101

Rl T g g ¥

PR g g g g
e e e e T

“Everyday I'm Shuffling”

= RDDs let us keep data Wlthln qU|ck reach, in-memory

" But, cIusterc,F aTalVilaTe dn;am;
a0 o

[) = Q

= Data transfer e call “ Shuffle”

(I
(

= So, we haver

8 OpenFabrics Alliance Workshop 2017

APACHE SPARK 101

Shuffle Basics

T T e T i T T
e T e o e T

),
Y
J
J
}.
=
}.f
o
o

Shuffling is the process of redistributing data across partitions (AKA repartitioning)

1 Shuffle Write 2 Broadcast block 3 Shuffle Read
locations

(>>>
Worker nodes write their intermediate data The master node broadcasts a combined Each reduce partition fetches all of the
blocks (Map output) into local storage, and list of blocks, grouped by partition blocks listed under its partition — from
list the blocks by partition various nodes in the cluster

Mellanox Spork 9 OpenFabrics Alliance Workshop 2017

NN A AN AN

I i e e BT T T
L W T Y W Y N N N N N NN N
Y Y Tt v o T S T T
I T {I._/_.\/(\.x.\.f\{/.\..{

P i P i N N N N N e N N N N N

B T T i T T T T

OpenFabrics Alliance Workshop 2017

10

H
F
=1

=9

=
=t

THE POTENTIAL IN ACCELERATING SHUFFLLi_. |

What'’s the opportunity here?

e e e e T
T e i e e e

= Before setting off on the journey of adding RDMA to Spark, it was essential to estimate
the ROI of such work

= What’s better than a controlled experiment?

Goal Quantify the potential performance gain in accelerating network
transfers

\V/[Elglele s Bypass the network in Spark Shuffle and compare to the original:
No network = maximum performance gain

OpenFabrics Alliance Workshop 2017

THE POTENTIAL IN ACCELERATING SHUFFLE

Bypassing the network in Spark Shuffle

= General idea;

* Do not fetch blocks from the network, just reuse a local sampled block over and over

* No copying

* No message passing what so ever (for Shuffle)

Everything else stays exactly the same! (no optimizations in Shuffle)

* Compare to TCP
Phase TCP Shuffle Network bypass Shuffle
Worker node initialization Read sampled shuffle block from disk for reuse in Shuffle
On block fetch request Send request and wait for data to Immediately complete the block
come in to trigger completion fetch request
On block fetch request Drop incoming shuffle data block No op
completion

Deliver shuffle block

Duplicate (shallow copy) the sampled buffer from initialization and
publish (trim to desired size)

12 OpenFabrics Alliance Workshop 2017

THE POTENTIAL IN ACCELERATING SHUFFL

Testbed

= Benchmark;:
* HiBench TeraSort
* Workload: 600GB

" Testbed:

* HDFS on Hadoop 2.6.0
* No replication

* Spark 2.0.0
* 1 Master
» 30 Workers
» 28 active Spark cores on each node, 840 total

* Node info:
» |Intel Xeon E5-2697 v3 @ 2.60GHz
» 256GB RAM, 128GB of it reserved as RAMDISK
« RAMDISK is used for Spark local directories and HDFS

rK 13 OpenFabrics Alliance Workshop 2017

& Spo

THE POTENTIAL IN ACCELERATING SHUFFL 38

TeraSort

e e e il e e il e
T e

" TeraSort:
* Read unsorted data from HDFS
* Sort the data
* Write back sorted data to HDFS

= Workload:

* A collection of K-V pairs
* Keys are random

10 2 |32 4 48 4

I T Y I I Y
Key Const Row ID Const Filler Const

= Algorithm at high-level (all phases are distributed among all cores):
* Define the partitioner:
* Read random samples from HDFS and define balanced partitions of key ranges
* Partition (map) the data:
* Read data from HDFS, and group by partition, according to the partitions defined in #1 (Shuffle Write)
* Retrieve partitioned data (Shuffle Read)
o Sort the K-V pairs by key
» Write the sorted data to HDFS

K’

OpenFabrics Alliance Workshop 2017

& Spo

THE POTENTIAL IN ACCELERATING SHUFFLI%

Results

900
800
700
600
500
400
300
200
100

0

TCP TeraSort vs. Network-bypass TeraSort Loweris better

Runtime samples NoOi ..

Average

777 seconds

=TCP
= Network-Bypass

Max

. bypass Opportunity

b seconds

Max

815 seconds

389 seconds

Min

755 seconds

318 seconds

K’

Mellanox SpQ

15 OpenFabrics Alliance Workshop 2017

NN A AN AN

I i e e BT T T
L W T Y W Y N N N N N NN N
Y Y Tt v o T S T T
I T {I._/_.\/(\.x.\.f\{/.\..{

P i P i N N N N N e N N N N N

B Y T Y W W Y W W W W AW P

A N N N N N NN NN NI NN

i S S N

OpenFabrics Alliance Workshop 2017

16

Lam
e
=
aL
=
U
—
=

ACCELERATING SHUFFLE WITH RDI\/IA:.: :’

Challenges

S g S S S

L i e e e il il il
S e il i e il il il e
e e e e T

T e i e e e

Challenges in adding RDMA to Spark Shuffle

= Spark is written in Java & Scala
* What RDMA API to use?
* Java’s Garbage Collection is a pain for managing low-level buffers

= RDMA connection establishment — how can we make connections as long lived as
possible?

= Spark’s Shuffle Write data is currently saved on the local disk. How can we make the
data available for RDMA?

= Must keep changes to Spark code to a minimum
* Spark is not very plug-in-able
* Spark keeps changing rapidly — APl changes, implementation changes
* Maintain long term functionality

17 OpenFabrics Alliance Workshop 2017

K’

& Spo

ACCELERATING SHUFFLE WITH RDI\/IA:.: :’

RDMA Facilities — Design Notes

e e e e i e e e
PR S S N

T e i e e e

= RDMA APl is available in Java through:
* JXIO-AccellO — Abstract of RDMA through RPC (https://github.com/accelio/JXIO)
* DISNi — Open-source release of IBM’s JVerbs — ibverbs like interface in Java (https://github.com/zrlio/disni)
* We have decided to go with DiSNi since it gives us more flexibility

= RDMA buffer management
* Centralized pool of buffers per worker node
* Pool consists of multiple stacks of different sizes (in powers of 2)
* Buffers are allocated off-heap and registered on demand
* When they are no longer in use — they are recycled back to the pool
* Survive for the length of a job (minutes)

= RDMA connection establishment
* For simplicity, couple each TCP connection with a corresponding RDMA connection
* RDMA is used for all block data transfers
* Survive for the length of a job (minutes)

Mellanox Spor K OpenFabrics Alliance Workshop 2017

https://github.com/accelio/JXIO
https://github.com/zrlio/disni

Mellanox

chchch NOLOGIES

ACCELERATING SHUFFLE WITH RDMA S

Shuffle Write — Design Notes

= The challenge — get the Shuffle data in memory, and register as a Memory Region

= We provide two modes:

Method
Description

Pros

In-memory

Instead of saving Shuffle data to disk,
save it directly into RDMA buffers

File-mapping

Map Spark’s file on local disk to memory, and
register as a Memory Region

 Faster and more consistent than file-
mapping unless low on system memory

* Less overhead for RDMA
« Simpler indexing (buffer-per-block)

Minimal changes in Spark code

Files are already in buffer-cache — mmap is
not expensive

Comparable memory footprint to TCP

No functional limitations

* High memory footprint

« Many changes in Spark’s ShuffleWriters

and ShuffleSorters
« Limited functionality (Spills, low
memory)

mmap() occasionally demonstrates latency
jitter
Indexing — multiple blocks per file as in TCP

19

OpenFabrics Alliance Workshop 2017

ACCELERATING SHUFFLE WITH RDI\/lA? 53

Shuffle Read Protocol in Spark

Requestor | Responder
Fetch: List of BlocklDs for a new l

stream \ '

Fetch Request RPC:
BlockID list

. Lookup blocks (from mem/disk) and
I setup a stream of blocks

Fetch Response RPC:
StreamlID

Send block fetch requests for each |
block in the StreamID :

Fetch Request RPC:
BlockIiD=y

| > Lookup block, and send data as RPC

Fetch Response RPC:
L ' Data for BlockiD=y

P g S

Collect incoming blocks, call / .

completion handler per block .
|

OpenFabrics Alliance Workshop 2017

K’

& Spo

20

ACCELERATING SHUFFLE WITH RDI\/lA% 53

Shuffle Read Protocol in Spark

e e e e T

Requestor | Responder
Fetch: List of BlockIDs for a new l
stream I
v Fetch Request RPC:
Allocate an RDMA buffer per block . BIOZ‘;‘S + Rll<-ey *
v rt.ass ISt —— > Lookup blocks (from mem/disk) and
setup a stream of blocks
v

v .

RDMAW rite each local block to the

remote block
RDMAWTrite per block *

/ : Last block in Stream: RDMAWrite with
' / Immediate to notify requestor of Stream
fetch completion

RDMAWT ite with
Immediate for last

Call completion handler on all of the / block

blocks in the stream I

K’

!
!
!
I Retrieve Lkey and vAddress of blocks
!
!
!

& Spo

21 OpenFabrics Alliance Workshop 2017

ACCELERATING SHUFFLE WITH RDMA

Shuffle Read: TCP vs. RDMA

= N = Number of blocks

Number of messages per 2(N+1)
fetch

Number of copy operations Responder: 1 to 2 times 0-copy
per block Requestor: 1 time

Total: 2 to 3 times

K’

22 OpenFabrics Alliance Workshop 2017

Mellanox SpQ

N N NN N NN N NN NN NN NN N
R f\/\—t\(s
P e s e e e b e e s e e
A A A A AN NN A A A A
NN AN AN AN N S T

I {I._/_.\:r\:x.\.f\{/.\..{

T T W W
B Y T Y W W Y W W W W AW P
i T T T T T T P L L L

Y

OpenFabrics Alliance Workshop 2017

RESULTS

Lam
e
=
aL
=
U
—
=

RESULTS

In-house TeraSort Results

TCP vs. RDMA Lower is better

350
Uesilorzsl 300 E— =
HiBench TeraSort =— 18% —_— 179 0
Workload: 300GB 250 Ee— 0
HDFS on Hadoop 2.6.0
No replication 200 =TCP
Spark 2.0.0 150 RDMA
1 Master
14 Workers 100
28 active Spark cores on
each node, 392 total 50
Node info: 0
Intel Xeon E5-2697 v3 @ Average Min Max

2.60GHz
RoCE 100GbE
256GB RAM

HDD is used for Spark local
directories and HDFS

Runtime samples Improvement

Average 301 seconds 247 seconds

Max 284 seconds 237 seconds

Min 319 seconds 264 seconds

Mellanox SpQrK : 24 OpenFabrics Alliance Workshop 2017

RESULTS

Real-life Applications - Initial Results

TCP vs. RDMA Lower is better

160
140

100

=TCP
15% 11% RDMA

80
60
40
20

Customer App #1 Customer App #2 HiBench TeraSort

Runtime samples TCP Improvement Input Size Nodes Cores per node RAM per node

Customer App #1 | 138 seconds | 114 seconds 5GB 14 24 85GB
Customer App #2 | 60 seconds | 51 seconds 270GB 14 24 85GB
HiBench TeraSort | 66 seconds | 59 seconds 100GB 16 24 85GB

Mellanox SpQrK : 25 OpenFabrics Alliance Workshop 2017

ROADMAP

What's next?

= Spark RDMA in GA expected in 2017
" Open-source Spark plugin
" Push to Spark upstream

Mellanox SpQrK : 26 OpenFabrics Alliance Workshop 2017

e
=
o
M
=

ALLIANCE

A N N N N N N N N N N N Nl Nl T e

WA AN b A AAA A A
‘f\{f\({(T W W W W WA A

AAA AL A A A A A A
A A A A A A A A A AN

P s o A N W W W W
i e e e - M e e e P N e N N N N
Pl e P P N S Y W W

B T R N Y VA VL LS

e Y T i T T T T W P Y VAT A VL Ve

A A A A A A A A AN AN
BT i e e i i i e i T
B T T e

R T Tl Tl T T Y Y YT
N T T T e W L N S N W N VeV

W W LW oo BN

B N T Y W N N Y W v _ o -

-
s e N N
S S N N N NN N NN

S S S N

Big Data and Machine Learn

13" ANNUAL WORKSHOP 2017
THANK YOU
Sr. Manager

Yuval Deganl

P e e e i
AT A A A A T a T aT AT AT T

[T T T N S e e e e

L Tt e e e e s e s e

[i e i i i sl i e i e e e

O e e e i e e s e s e e

P e e e e e e
PR gl gl g g Sl Sl S S g S S S S N
e e i sl i i il i i i i i s i e s s al
T i i N N
L i dl il dl il i dis il il di dis e al ale e di il
)\;\f\f\j\/}\f}\f\z}}}}}\; e
P e " e i dls i s d i sl s dle s
LN NN P e i e e e e e

Mellanox
TECHNOLOGIES

Yii\N

	Accelerating Apache Spark with RDMA
	Agenda
	Apache spark 101
	Apache spark 101
	Apache spark 101
	Apache spark 101
	Apache spark 101
	Apache spark 101
	Apache spark 101
	The Potential in Accelerating Shuffle
	The Potential in Accelerating Shuffle
	The Potential in Accelerating Shuffle
	The Potential in Accelerating Shuffle
	The Potential in Accelerating Shuffle
	The Potential in Accelerating Shuffle
	Accelerating Shuffle with RDMA
	Accelerating Shuffle with RDMA
	Accelerating Shuffle with RDMA
	Accelerating Shuffle with RDMA
	Accelerating Shuffle with RDMA
	Accelerating Shuffle with RDMA
	Accelerating Shuffle with RDMA
	Results
	Results
	Results
	Roadmap
	THANK YOU

