
13th ANNUAL WORKSHOP 2017

CRAIL
A HIGH-PERFORMANCE I/O ARCHITECTURE FOR THE

APACHE DATA PROCESSING ECOSYSTEM

Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Bernard Metzler,
Ioannis Koltsidas, Radu Stoica and Nikolas Ioannou

[March 2017]

IBM Zurich Research

OpenFabrics Alliance Workshop 2017

AGENDA

Problem statement

Introducing Crail
The Crail Data Store

Crail Modules

Clever Storage Tiering

Applying the Crail approach to Big Data
TeraSort

Storage Disaggregation

NVMeF Tier

SQL

Summary and discussion

2

OpenFabrics Alliance Workshop 2017

DO BIG DATA PROCESSING FRAMEWORKS BENEFIT FROM

MODERN IO TECHNOLOGY?

 Network interconnects have evolved

• From 1Gbs to 100Gbs

• From 100μs delay to 1μs delay

 Storage technology has evolved

• Factor of 100x – 1000x

 IO APIs have evolved

• From sockets to RDMA verbs

• From block IO to NVMe

 Large scale data processing frameworks matured

 How do these frameworks benefit from modern IO?

• Large scale data processing done in distributed systems

• IO intensive tasks should benefit

• Shuffle, inter-job data sharing,…

 Do we see faster analytics query response times?

Network IO
Performance

RTT (μs) Bandwidth
(Mbit/s)

1GbE (sockets) 82 942

10GbE (sockets 17 9896

100GbE(sockets) 17 63636

100GbE (verbs) 2.4 92560

Storage IO
Performance

Latency (μs) Bandwidth (Mbyte/s)

read write read write

Disk
Block device

5978 5442 136.8 135.3

NVMe Flash
SPDK

54.1 8.59 3433.3 2051.7

3

OpenFabrics Alliance Workshop 2017

BIG DATA SYSTEMS CHALLENGED BY

HIGH-PERFORMANCE NETWORKS

4

R
u

n
ti

m
e

(s
ec

)

Spark
TeraSort

Spark
PageRank

Spark
SQL

Flink
PageRank

GraphLab
PageRank

OpenFabrics Alliance Workshop 2017

BIG DATA SYSTEMS CHALLENGED BY

HIGH-PERFORMANCE STORAGE

5

0

500

1000

1500

2000

2500

3000

Remote
HDFS File

R
ea

d
 L

at
en

cy
 (

µ
se

c)

Local
HDFS File

Local
XFS File

Local XFS File
Direct I/O

(bypasses cache)

SRP Block

1 MB Random Read Latency HDFS Client

HDFS DataNode

HDFS Client

XFS Filesystem

Multipath SRP

All-Flash Array

5
6

G
b

it
 I
B

5

6
G

b
it
 I
B

OpenFabrics Alliance Workshop 2017

HARDWARE PERFORMANCE BURIED IN THE BIG DATA STACK

6

• Data copies
• Context switches
• Cache pollution
• Deep callstack
• Legacy IO interfaces

Fast I/O Hardware

 Ineff. local IO stack
Remotely even worse
 Data locality at

(almost) any price

OpenFabrics Alliance Workshop 2017

I/O GAINS ARE SHADOWED BY CPU

52%

92%

97%

99%

48%

8%

0% 20% 40% 60% 80% 100%

1Gb/s

10Gb/s

40Gb/s

100Gb/s

IO
 B

an
d

w
id

th

CPU Network

7

• CPU time is not just application time!
• Includes all the IO stack overhead

• Faster IO hardware does not help
• IO stack redesign needed

OpenFabrics Alliance Workshop 2017

CRAIL: AN ARCHITECTURE TO ENABLE HIGH PERFORMANCE IO

IN BIG DATA SYSTEMS

Crail
 Architecture to deliver the performance of high-end

storage and networking hardware to the application

 Relies on the principles of user level IO
 Separation between control path and data path

 User-space direct-access I/O architecture/layer cut-through

 Based on open source DiSNI user level IO stack for JVM (aka jVerbs)

 Builds on a distributed, shared data store

 Used by multiple nodes, jobs or stages in a job to
store and share data

 Comes with two flavors of interfaces for integration
 Direct access to store

 Data processing tailored plug-in modules

 No changes to overall data processing framework

 Is optimized to serve short-lived working set data

Spark / Flink / Storm …

HDFS

Crail Store

High Performance
RDMA Network

Zero
 C

o
p

y

Spark specific

Shuffle Broadcast

8

OpenFabrics Alliance Workshop 2017

CRAIL STORE: A DISTRIBUTED FILE SYSTEM NAME SPACE

 File system name space across cluster

 RDMA interconnect

• I/O buffers are pre-registered for RDMA

 File access translates to asynchronous IO

 Multiple storage tiers

• DRAM

• Shared volume (block device via SRP etc)

• NVMeF

• (more planned, such as GPU memory)

 Store comprises compute, data, name node

 Data nodes may be

• Co-located with compute, or

• Disaggregated

 Data affinity control

• Location

• Storage Tier

“/”

“tmp/” “shuffle/”

High Performance
RDMA Network

…

file

DRAM
block

NVM
block

Disaggregated
NVM

Integrated
DRAM/NVM

data
node

9

OpenFabrics Alliance Workshop 2017

MICORBENCHMARKS: CRAIL STORE FILE ACCESS (READ)

 Comparing with some high-performance in-memory tiers

 Crail file read performance bare metal

 Crail file access latencies among ‘best of breed’

10

OpenFabrics Alliance Workshop 2017

CRAIL STORE: STORAGE TIERING

 Crail supports multiple storage tiers: memory, various types of Flash, disk

 Multiple tiers can be aggregated into a single address space, and

 Higher performance tiers are filled up across the cluster prior to using lower tiers

• Assumption of ‘local always faster than remote’ is not true anymore

• Priority strategy selectable (application may choose ‘storage affinity’)

• E.g., if set to DRAM, NVM store only used if DRAM completely filled up

(automatic spill over)

DRAM

NVMe

Block

Node 1

DRAM

NVMe

Block

Node 2

DRAM

NVMe

Block

Node 3

DRAM

Block

Node 3

DRAM

Block

Node 2

DRAM

NVMe

Block

Node 1

NVMe NVMe in use

in use

Traditional
per node vertical tiering

(such as Tachyon)

Crail
horizontal per resource

type tiering

11

OpenFabrics Alliance Workshop 2017

CRAIL PLUGIN MODULES CURRENTLY AVAILABLE

Shuffle

 Spark specific plugin

 Maps key ranges to Crail dir’s

 Map task appends k/v pairs to

files in matching key directory

 Selects storage affinity

(DRAM) for best performance

Broadcast

 Spark specific plugin

 Stores broadcast variables

in Crail files

 Variables are inherently

globally shared

 Unselects location affinity to

ensure variables are equally

distributed

 Very efficient in DRAM tier

 File write (~line speed) +

10μs publish + file read

(~line speed)

HDFS Adaptor

 Generic plugin

 Exports HDFS file system

 Mapping between sync.

HDFS calls and async. Crail

operations

 Crail specific extra

functionality exposed via

admin tools per directory

 Storage affinity, etc.

 Available for all Big Data

frameworks using HDFS

12

OpenFabrics Alliance Workshop 2017

EVALUATION - TERASORT

0

100

200

300

400

500

600

Spark Spark/Crail

R
u

n
ti

m
e

 (
se

co
n

d
s)

12.8 TB data set, TeraSort

reduce

map

128 nodes OpenPOWER cluster

• 2 x IBM POWER8 10-core @ 2.9 Ghz

• DRAM: 512GB DDR4

• 4 x 1.2 TB NVMe SSD

• 100GbE Mellanox ConnectX-4 EN (RoCE)

• Ubuntu 16.04 (kernel 4.4.0-31)

• Spark 2.0.2

Performance gain: 6x

• Most gain from reduce phase:

• Crail shuffler much faster than Spark build-in

• Dramatically reduced CPU involvement

• Dramatically improved network usage

• Map phase: almost all activity local

• Still faster than vanilla Spark

13

OpenFabrics Alliance Workshop 2017

EVALUATION – TERASORT:

NETWORK IO

 Vanilla Spark runs on 100GbE

 Spark/Crail runs on 100Gb RoCE/RDMA

 Vanilla Spark peaks at ~10Gb/s

 Spark/Crail shuffle delivers ~70Gb/s per node

14

OpenFabrics Alliance Workshop 2017

EVALUATION – TERASORT

CPU EFFICIENCY

 Spark/Crail completes much faster despite comparable CPU load

 Spark/Crail CPU efficiency is close to 2016 sorting benchmark

winner: 3.13 vs. 4.4 GB/min/core

 2016 winner runs native C code!

Spark +
Crail

Spark
2.0.2

Winner
2014

Winner
2016

Size
TB

12.8 100

Time
sec

98 527 1406 98.6

Cores 2560 6592 10240

Nodes 128 206 512

NW
Gb/s

100 10 100

Rate
TB/min

7.8 1.4 4.27 44.78

Rate/core
GB/min

3.13 0.58 0.66 4.4

15

OpenFabrics Alliance Workshop 2017

EVALUATION – STORAGE DISAGGREGATION SUPPORT

 Why storage disaggregation?

• Independent scaling of compute and storage

• Higher utilization due to less fragmentation

• Easier maintenance

 Challenge

• Systems like Hadoop/Spark have been designed for local storage!

crail

Spark Memory

Node 1

crail

Spark Memory

Node 2

crail

Spark Memory

Node 3

RDMA

Spark

M
em

o
ry

Node 2

HDFS

SS
D

SS
D

SS
D

SS
D

Spark

M
em

o
ry

Node 1

HDFS
SS

D

SS
D

SS
D

SS
D

Spark

M
em

o
ry

Node 3

HDFS

SS
D

SS
D

SS
D

SS
D

16

OpenFabrics Alliance Workshop 2017

EVALUATION – STORAGE DISAGGREGATION

Experiment:

• Sorting 400GB of data

• 10 nodes cluster

• 56 Gb/s InfiniBand network

• HDFS: local attached flash
 2 x 1TB SSD/node, 2-way replication
 uses host memory (via OS page cache)

• Crail: SRP attached flash
 1 x FlashSystem 840 (8 cards, 23TB use)
 does not use host memory

• About the same Flash BW and capacity

Result:

• Crail + disaggregated flash achieves over 20% speedup

• More efficient to access remote flash in Crail than local
flash in Spark!

0

100

200

300

400

500

600

700

800

900

HDFS/SSDs Crail/Shared Volume

Sp
ar

k
Te

ra
So

rt
 c

o
m

p
le

ti
o

n
 t

im
e

 (
se

c)

17

OpenFabrics Alliance Workshop 2017

ADDING THE CRAIL NVMEF TIER

 NVMeF technology maturity
• Adds little latency to local NVMe device access

• Promising technology for storage disaggregation

 Adding a new (NVMeF) tier to Crail:
• Storage tiers are just plugin’s

• Implementing some abstract functions of a shared data node class (init,
createEndpoint, run, close..) and an endpoint class (read, write, close, …)

 Crail NVMeF client and target code uses SPDK libraries
• JNI wrapper for SPDK control and data transfer functions

• Integrated with DiSNI (former ‘jVerbs’) IO layer within Crail

 Crail NVMeF data node
• Calls into SPDK NVMeF target code

 Crail NVMeF client
• Calls into SPDK NVMeF initiator code

• Unfortunately, no direct buffer passing possible (yet)

• Data copy within SPDK library

• Unfortunately, no clear split with DPDK library (always carried around, but
not fully needed here)

• Changes were needed to allow for non-root usage

RDMA

18

Crail Core

DRAM NVMeF BlkDev …

SRP NVMeF

Data Processing

IO

Compute

OpenFabrics Alliance Workshop 2017

0
10
20
30
40
50
60
70
80

random
read 512B

random
read 4K

random
write 512B

random
write 4K

La
te

n
cy

 (
μ

s
)

SPDK local
SPDK remote
DiSNI local
DiSNI remote
Crail remote*

NVMEF TIER PROTOTYPE RESULTS: ACCESS LATENCY

Setup

• Samsung 960 Pro

• Chelsio T5 40Gb

• SPDK git master early March’17

• Investigating local and remote NVMeF access

• QD: 1 (latency), 128 (BW)

Results

• DiSNI/Java adds very little to plain SPDK

• True for local and remote

• Crail store adds some 10μs to native latency

• Crail file read/write to NVM is close to bare metal IO

• Bandwidth always at device limit (not shown)
19

Crail control

DiSNI – Java bindings

SPDK NVMeF

Crail store

DiSNI – Java bindings

SPDK NVMeF

Crail client node Crail data node

OpenFabrics Alliance Workshop 2017

NVMEF TIER PROTOTYPE RESULTS: TERASORT

20

TeraSort run for 200GB

Setup:

• 10 machines

• NVMe: 2 x 960 Pro 512GB per machine, ext4 fmt.

• Spark/Yarn: 10 executors, 8 cores each

80 tasks parallel

Run:

• Spark

• Input/output to NVMeF (HDFS)

• Shuffle to tmpfs (DRAM, basically)

• Best result found at partition size of 64MB

• Crail

• Input/output to Crail NVMeF tier

• Shuffle to Crail DRAM tier

• Best result found at partition size of 256MB

0

20

40

60

80

100

vanilla Spark Crail

R
u

n
ti

m
e

 in
 s

e
co

n
d

s reduce

map

SPDK init

Results

• Crail beats vanilla Spark by more than 50%

• Why only reduce phase contributes to perf. gain?

 `SPDK initialization hurts Crail

• 7 seconds to set up/register buffers etc.

• Includes DPDK initialization

OpenFabrics Alliance Workshop 2017

EVALUATION - SQL

Performance of an SQL join Spark/SQL evolved into fast, powerful SQL system

 Experiment on 8 nodes:

• Compare performance of SQL join operation of two large tables

• Cartesian product of two RDDs

• Re-arrange RDDs partitions, execute predicate on desired

columns

• Experimental join operation: EquiJoin

• Matching rows based on same values

• Implemented as MapReduce job

• Two Parquet data sets joined, 128GB from 128 million rows each

• Vanilla Spark vs Crail + Crail Shuffle

• Parquet files stored in HDFS or Crail/HDFS

• Map: Tables read from distributed store and key ranges written to

worker nodes

• Reduce: Each worker collects two sets of rows, scans and joins,

and writes out matching rows

 25% performance gain with simple

workload

 Gains from all four IO phases

 Reduce gains overshadowed by heavy

local de-serialization, sorting and join

21

OpenFabrics Alliance Workshop 2017

CONCLUSION

 Radical re-design of I/O (network & storage) for analytics by exploiting modern hardware

 RDMA, NVMe & NVMe over fabrics

 Extends Spark operation by plugins to take advantage of Crail

 Enable high-performance disaggregated storage for analytics

 Crail reduces Time-to-Insight and cost/performance

 Crail is open source: www.crail.io

 Stay tuned: Crail will get presented at 2017 Spark Summit this June

Today’s open source analytics stacks

 Existing analytics stacks designed for yesterday's commodity hardware

 Performance on high-end hardware inhibited by heavy-layered stack architecture

The Crail approach

22

http://www.crail.io/

OpenFabrics Alliance Workshop 2017

DISCUSSION

Crail is not "tied" to Spark
• Independent of the compute framework

• The focus is on high-performance data sharing

Crail is not about "just" putting RDMA in Spark
• Focus is on the high-performance, user-level IO in a distributed system

• Expands beyond RDMA to storage (e.g., NVMeF)

• Even allows to execute on non-RDMA networks – TCP/IP tier available

Crail is not just an academic prototype
• Tried and tested on 100+ nodes, multiple architectures, and RDMA networks

• Independent modules (tiering, RPC, buffer management, scheduling, etc.)

• Active development targeting GPUs, FPGAs, and diverse workloads

• Check out www.crail.io (all sources are available at github.com)

23

http://www.crail.io/

13th ANNUAL WORKSHOP 2017

THANK YOU
Bernard Metzler

 IBM Zurich Research

[LOGO HERE]

