
13th ANNUAL WORKSHOP 2017

Performance of a Task-Parallel PGAS Programming
Model using OpenSHMEM and UCX

Max Grossman1 and Howard Pritchard2

[March 28, 2017]

1Rice University, 2Los Alamos National Laboratory

OpenFabrics Alliance Workshop 2017

Outline

▪ State of Multi-Threading in OpenSHMEM
▪ AsyncSHMEM Overview
▪ API Extensions
▪ Runtime Implementations
▪ Performance Evaluation
▪ Discussion of Contributions & Future Directions

OpenFabrics Alliance Workshop 2017

OpenSHMEM Threading Group

Concerned with enabling safe use of
OpenSHMEM in a multi-threaded
environment.

▪ OpenSHMEM today is not
thread-safe

Bottom-up approach to the general
problem of thread safety.

Likely outcome: MPI-like thread
safety with OpenSHMEM contexts

for (t = 0; t < nthreads; t++) {

 shmem_ctx_create(0, ctxs + t);

}

#pragma omp parallel

{

 ...

 shmem_ctx_putmem(...,

 ctxs[omp_get_thread_num()]);

 ...

}

OpenFabrics Alliance Workshop 2017

OpenSHMEM Threading Group

OpenSHMEM Runtime

Thread Safe Layer

Contexts

Single- or Multi-Threaded App
(pthreads, qthreads, OMP, etc.)

OpenFabrics Alliance Workshop 2017

Outline

▪ State of Multi-Threading in OpenSHMEM
▪ AsyncSHMEM Overview
▪ API Extensions
▪ Runtime Implementations
▪ Performance Evaluation
▪ Discussion of Contributions & Future Directions

OpenFabrics Alliance Workshop 2017

AsyncSHMEM Overview

AsyncSHMEM targets the same problems as the OpenSHMEM threading group.

Look at the problem top-down: how can we make multi-threaded runtimes more
OpenSHMEM-aware to improve their use together (productivity and performance).

Encourage asynchrony to protect against variability/latencies in future HPC systems.

OpenFabrics Alliance Workshop 2017

AsyncSHMEM Goals and Deliverables

▪ Explore new APIs at the boundary between OpenSHMEM and tasking APIs
▪ Develop runtimes to support these extensions and existing APIs:

1. Offload Runtime works with current runtimes, does not rely on thread safety
of OpenSHMEM implementation, more opportunities for exploiting
asynchrony, especially for new applications (implemented)

2. Contexts-Based Runtime looks ahead to contexts, uses them under the cover
to drive the network from multiple threads while minimizing lock contention
(in-progress)

OpenFabrics Alliance Workshop 2017

AsyncSHMEM Execution Model

PE0

Task
Task

Task

PE1

Task
Task

Task

Task

shmem_int_put

Active messag
e

TaskTaskTask
Task

Task

OpenFabrics Alliance Workshop 2017

AsyncSHMEM Under the Covers

Node0

AsyncSHMEM
extensions

Current OpenSHMEM Runtime

Worker Threads

Node1

AsyncSHMEM
extensions

Current OpenSHMEM Runtime

Worker Threads

OpenFabrics Alliance Workshop 2017

Open MPI/OSHMEM Runtime

atomicSPML (put/get)

OpenSHMEM API

sheap

U
C

X

M
X

M

Y
od

a

U
C

X

M
X

M

ba
si

c

U
C

X

ve
rb

s

m
m

ap
/

sy
sV

MCA
Frameworks

Framework
components

Network API/Linux shared memory interfaces

UCX components used
in this study

OpenFabrics Alliance Workshop 2017

Outline

▪ State of Multi-Threading in OpenSHMEM
▪ AsyncSHMEM Overview
▪ API Extensions
▪ Runtime Implementations
▪ Performance Evaluation
▪ Discussion of Contributions & Future Directions

OpenFabrics Alliance Workshop 2017

Creating an asynchronous task --- shmem_task()

void foo(void *data) {// Body of child task
 . . .
}

void entrypoint(void *args) { // Body of root task
 shmem_task(foo, NULL);
}

int main(int argc, char** argv) {
 shmem_worker_init(entrypoint, NULL);
}

void shmem_task(void (*body)(void *), void *data);
Creates an asynchronous task defined by body (like “begin” construct in Chapel)

OpenFabrics Alliance Workshop 2017

void shmem_task_scope_begin();
void shmem_task_scope_end();

Starts and ends a task synchronization scope. Like Chapel’s “sync” construct, shmem_task_scope_end() waits on all tasks
created in scope before returning control to the calling task. Task scopes may be nested.

Join synchronization for parallel tasks --- shmem_task_scope

void foo(void *data) {
 shmem_task(bar, NULL);
}

void entrypoint(void *args) {
 shmem_task_scope_begin();
 {
 shmem_task(foo, NULL);
 shmem_task(baz, NULL);
 }
 shmem_task_scope_end(); // Wait for tasks foo, bar, baz
}

OpenFabrics Alliance Workshop 2017

Futures and Promises

void producer(void *data) {
 shmem_satisfy_promise((shmem_promise_t *)data, NULL);
}

void consumer(void *data) {
 // Only starts executing after producer satisfies the promise
}

shmem_task_await(shmem_future_for_promise(promise), consumer, NULL);

void shmem_satisfy_promise(shmem_promise_t *promise, void *data);
Store a value into a single-assignment promise.

void shmem_task_await(shmem_future_t *future, void (*body)(void *data), void *data);
Create an asynchronous task whose execution is predicated on the satisfaction of the specified future.

OpenFabrics Alliance Workshop 2017

Communication-Driven Tasks --- shmem_task_when()

Communication-driven tasks allow remote communication to trigger asynchronous task
creation on a PE.

Analogous to existing shmem_wait APIs, but these APIs do not block, and also offer single-
and multi-condition variants.

void shmem_int_task_when(int *ivar, int cond, int value,
 void (*body)(void *), void *data);

Create an asynchronous task when the specified condition is satisfied on the specified location in the symmetric heap.
Analogous to shmem_int_wait_until, except that this call never blocks.

OpenFabrics Alliance Workshop 2017

Outline

▪ State of Multi-Threading in OpenSHMEM
▪ AsyncSHMEM Overview
▪ API Extensions
▪ Runtime Implementations
▪ Performance Evaluation
▪ Discussion of Contributions & Future Directions

OpenFabrics Alliance Workshop 2017

AsyncSHMEM Under the Covers (Recap)

Two implementations of the AsyncSHMEM API:
▪ Offload runtime
▪ Contexts runtime

Both fundamentally based on the same system
design: work-stealing, multi-threaded runtime
paired with an OpenSHMEM implementation.

▪ In this case, OpenMPI’s OSHMEM over UCX

Node0

AsyncSHMEM
extensions

Current OpenSHMEM Runtime

Worker Threads

OpenFabrics Alliance Workshop 2017

Offload Runtime

get

barrier_
all

lock

put

OpenFabrics Alliance Workshop 2017

Offload Runtime (cond’td)

Example lifetime of a shmem_int_put in the offload runtime:

Arguments to the shmem_int_put call are wrapped in a task, placed at the
communication worker.

2. Calling task is suspended, current worker thread picks up another task.
Communication worker eventually picks up shmem_int_put task and performs the
shmem_int_put call.

4. Suspended task is re-inserted into work-stealing runtime.

OpenFabrics Alliance Workshop 2017

Contexts Runtime (In-Progress)

OpenFabrics Alliance Workshop 2017

Outline

▪ State of Multi-Threading in OpenSHMEM
▪ AsyncSHMEM Overview
▪ API Extensions
▪ Runtime Implementations
▪ Performance Evaluation
▪ Discussion of Contributions & Future Directions

OpenFabrics Alliance Workshop 2017

Application Benchmarks

Extensions to OpenSHMEM are in part being validated through application
benchmarks.

Application focus to date:
• ISx – Distributed integer sort (dataset = up to 2 billion keys per node)
• UTS – Unbalanced tree search (dataset = T1XXL)
• G500 - Distributed breadth first search (dataset = up to 2^27 vertices)

Evaluation shown today performed on LANL Hickok and Rice DAVINCI systems using
OpenMPI’s OpenSHMEM implementation over UCX and the AsyncSHMEM Offload
runtime.

OpenFabrics Alliance Workshop 2017

Experimental Setup

Two clusters were used for these experiments (will also show non-UCX tests on Titan):

DAVINCI cluster at Rice
• Dual socket 2.8 GHz Westmere with 6 cores/socket
• Mellanox ConnectX3 QDR, PCI-e gen2
• RHEL 6.5/OFED 2.2-1

Hickok network technology testbed at LANL
• Dual socket 2.1 GHz Broadwell with 8 cores/socket
• Mellanox ConnectX5 EDR, PCI-e gen3
• 5 36-port EDR switches cabled in fat tree
• RHEL 7.2/MOFED 4.0.1-0

OpenFabrics Alliance Workshop 2017

OSU OpenSHMEM micro-benchmark results

UCX_TLS=dc_mlx5,sm or UCX_TLS=rc,sm

OpenFabrics Alliance Workshop 2017

OSU OpenSHMEM micro-benchmark results

OpenFabrics Alliance Workshop 2017

Habanero Tasking Micro-Benchmarks

OpenFabrics Alliance Workshop 2017

ISx

hickok DAVINCI

Titan scaling results

Low overheads of tasking
layer yields improvement on
hickok, hybrid parallelism
improves performance at
large scales.

OpenFabrics Alliance Workshop 2017

UTS

hickok

Titan scaling results

DAVINCI

OpenFabrics Alliance Workshop 2017

G500

hickok DAVINCI

Similar scaling results to 1024 nodes on Titan.

OpenFabrics Alliance Workshop 2017

Outline

▪ State of Multi-Threading in OpenSHMEM
▪ AsyncSHMEM Overview
▪ API Extensions
▪ Runtime Implementations
▪ Performance Evaluation
▪ Discussion of Contributions & Future Directions

OpenFabrics Alliance Workshop 2017

Contributions

Key contributions:
1. Exploration of OpenSHMEM and task-parallel runtimes, tying parallelism and

communication together and proposing extensions at the boundary of the two.
2. Two implementations of these extensions.

API extensions for parallelism motivated by Habanero model, with the addition of APIs
that connect OpenSHMEM communication with task-parallel execution.

OpenFabrics Alliance Workshop 2017

Ongoing Work

Runtime integration with Contexts in collaboration with Jim Dinan, Kayla Seager at Intel.

Continue to iterate on existing benchmarks.

Exploration of algorithmic opportunities opened up by contexts.

New application development (Fast Multipole Method).

OpenFabrics Alliance Workshop 2017

Acknowledgements

OpenFabrics Alliance Workshop 2017

Backup

OpenFabrics Alliance Workshop 2017

Summary of New APIs

Environment
• shmem_worker_init
• shmem_my_worker
• shmem_n_workers

Fork-join tasks
• shmem_task
• shmem_parallel_for
• shmem_task_scope_begin
• shmem_task_scope_end

Futures and promises
• shmem_satisfy_promise
• shmem_future_wait
• shmem_task_future
• shmem_task_await

Communication-driven tasks
• shmem_int_task_when
• shmem_int_task_when_any

OpenFabrics Alliance Workshop 2017

Environment APIs --- Hello World Example

void entrypoint(void *args) {
 printf(“This is thread %d, PE %d\n”, shmem_my_worker(), shmem_my_pe());
}

int main(int argc, char** argv) {
 shmem_worker_init(entrypoint, NULL);
}

void shmem_worker_init(void (*entrypoint)(void *), void *data);
Initializes both the OpenSHMEM (using shmem_init and shmem_finalize) and work-stealing
runtimes. entrypoint is the root task of the PE. The number of worker threads created is configurable
by environment variable.

int shmem_my_worker();
Returns a unique ID for the calling thread.

int shmem_n_workers();
Returns the number of threads in the thread pool for the calling PE.

OpenFabrics Alliance Workshop 2017

Creating a range of parallel tasks --- shmem_parallel_for()

void foo(int iter, void *data) {
 printf(“Hello from parallel iteration %d\n”, iter);
}

void entrypoint(void *args) { // Create 100 tasks with indices 0..99
 shmem_parallel_for(0, 100, foo, NULL);
}

int main(int argc, char** argv) {
 shmem_worker_init(entrypoint, NULL);
}

void shmem_parallel_for(int lower_bound, int upper_bound,
 void (*body)(int, void *), void *data);

Efficiently creates a batch of tasks, one for each integer in the range [lower_bound, upper_bound). There is no
implicit synchronization at the end of a call to shmem_parallel_for.

OpenFabrics Alliance Workshop 2017

Futures and Promises

void entrypoint(void *args) {
 shmem_promise_t *promise = shmem_create_promise();
 shmem_future_t *future = shmem_future_for_promise(promise);
}

shmem_promise_t *shmem_create_promise();
shmem_future_t *shmem_future_for_promise(shmem_promise_t *promise);

Create promise and future objects (akin to std::future and std::promise in C++).

Promise

Single-assignment
value

FutureRead-only pipe

OpenFabrics Alliance Workshop 2017

Futures and Promises

void producer(void *data) {
 shmem_satisfy_promise((shmem_promise_t *)data, NULL);
}

void consumer(void *data) {
 void *result = shmem_future_wait((shmem_future_t *)data);
}

shmem_task(producer, promise);
shmem_task(consumer, shmem_future_for_promise(promise));

void shmem_satisfy_promise(shmem_promise_t *promise, void *data);
Store a value into a single-assignment promise.

void *shmem_future_wait(shmem_future_t *future);
Wait for a future to be satisfied, and return its value.

OpenFabrics Alliance Workshop 2017

Communication-Driven Tasks --- Example

PE 0

void load_balancer(void *data) {
 // Load balancing logic here,
 // based on updated info from
 // remote PE
 ...
 // Re-register load balancer to
 // handle new updates from PE 1
 shmem_int_task_when(...);
}

shmem_int_task_when(remote_pe_load,
 SHMEM_CMP_NE, *remote_pe_load,
 load_balancer, NULL);
...

PE 1

// Called periodically to update PE
// 0 with info for distributed work
// stealing
shmem_int_put(remote_pe_load,
 local_pe_load, 1, 0);

