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BACKGROUND 
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EXISTING SOFTWARE RDMA DRIVERS 

 softiwarp and rxe 

• Implement iWARP over TCP and RoCEv2, respectively 

• Data transfer in kernel space 

• Run unmodified verbs applications 

• Designed with performance in mind 

 libfabric sockets provider 

• Implements private protocol 

• Userspace implementation using TCP/IP sockets 

• Cannot run verbs applications 

• High performance explicitly not a goal 
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SOFTWARE VERBS DRIVERS: KERNEL VS. USER SPACE 

 Userspace verbs API design choices 

• Verbs will not load a userspace driver without a corresponding uverbs device exposed by the kernel 

• Connection management deferred to kernel by librdmacm 

• CQ events delivered from kernel 

 Using userspace sockets API requires both userspace and kernel involvement 

 Using kernel sockets API 

• Incoming RDMA READ and RDMA WRITE can be handled entirely in kernel without waking user thread 

• Can use tricks like sendpage() to send TCP segments with zero-copy 

 Path of least resistance has been implementation using sockets API in kernel 

Why not implement a verbs driver using sockets API from userspace? 
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URDMA: USERSPACE RDMA 

 Goals 

• Prototype software RDMA driver with data transfer entirely in userspace 

• Run unmodified verbs applications 

• High performance 

 Why a userspace implementation? 

• Ease of development, makes it easy to use as a development vehicle for new RDMA features 

• Avoid context switches between kernel and userspace (especially for small SENDs) 

 Implementation uses DPDK (Data Plane Development Kit) 
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BACKGROUND: DPDK (DATA PLANE DEVELOPMENT KIT) 

 DPDK leverages Linux UIO/VFIO to map Ethernet NICs into userspace 

 Features: 

• Bulk packet transmit/receive to/from hardware NIC queues 

• NUMA-aware memory buffer pool allocation using hugepages 

• High performance multi-core data structures 

• Hardware packet filtering 

• TCP/UDP offloads, including checksum calculation 

 Does not provide: 

• RDMA functionality 

• Network-layer or transport-layer protocol logic 

 Using DPDK for userspace RDMA verbs eliminates kernel from data transfer path 
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RDMA SEND/RECV MESSAGE TRANSFER 
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DPDK PACKET TRANSFER 
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Socket 1 

Socket 0 

BACKGROUND: DPDK THREAD MODEL 

 DPDK creates 1 “lcore” thread per CPU 
core by default 

 Thread which initializes DPDK is 
“master” lcore 

 CPU affinity of each thread, including 
master, is set to run on a specific CPU 
core 

 API allows launching tasks on other 
logical cores 

 DPDK API expected to be called from 
lcores, in particular ring queues and 
memory pools rely on this 

 We tell DPDK not to create lcores other 
than the master lcore 

DPDK process consists of threads called “logical cores” or “lcores” 
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BACKGROUND: DPDK THREADS AND LIBRARIES 

 DPDK initialization function 

• Takes command-line arguments 

• Consumes all available hugepages by default 

• Changes CPU affinity of calling thread 

 To use DPDK from library, we create a 

thread and call DPDK initialization from 

there 

• Pass parameter to not create further lcores 

• Separate DPDK thread from user threads 

• We do not affect CPU affinity of user threads 

DPDK is more of an application framework than a library 

 

11 

main() Master lcore 
pthread_create() 



OpenFabrics Alliance Workshop 2017 

Kernel DPDK 
Application 

BACKGROUND: DPDK KNI 

 KNI (Kernel Network Interface) 

• Creates a virtual network interface in the kernel 

• Loosely associated with a DPDK Ethernet hardware NIC 

• Can exchange packets between kernel and userspace 

• Useful for small interactions between kernel service and DPDK application 
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URDMA: DESIGN AND IMPLEMENTATION 
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URDMA: DESIGN 

 Implements iWARP DDP and RDMAP protocols 

 Runs over UDP transport protocol 

• TRP (Trivial Reliability Protocol) provides a thin shim for reliability 

• Simplifies implementation considerably 

 Small kernel component 

• Required for libibverbs initialization, RDMA CM, and CQ events 

• Performs connection establishment before ceding control of UDP “connection” to liburdma 

• Uses KNI to send/receive packets to/from userspace 

 Packet processing done in background thread 

• Ensure quick response to RDMA packets and KNI events 

 Hardware receive filter used to assign queue pairs to NIC receive queues 
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URDMA: MULTI-PROCESS SUPPORT 

 DPDK maps Ethernet NIC hardware into userspace  owned by that process 

• Can delegate to secondary processes that explicitly cooperate 

• DPDK considers primary + secondary processes as one combined application 

• DPDK threads in combined application cannot share the same lcore identifier 

 In urdma, primary process is a user daemon urdmad 

• Initializes DPDK 

• Registers secondary processes with separate core mask 

• Assigns Ethernet NIC hardware RX/TX queues to urdma processes 

• Sets up Ethernet NIC hardware filtering rules 

 liburdma verbs provider 

• Sets up process as secondary DPDK process 

• DPDK “master” lcore acts as background progress thread 

 Each liburdma process has direct access to its Ethernet NIC hardware queues 
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URDMA: COMPONENTS 

App 

librdmacm libibverbs 

liburdma 

DPDK 
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URDMA CONNECTION ESTABLISHMENT 

 Connection establishment done in kernel space 

 In userspace: 
• Each queue pair must be assigned a Ethernet NIC hardware send and receive queue 

• Hardware receive filtering rules must be assigned before first packet arrives 

• Private character device used to communicate connection establishment 

liburdma urdmad kernel 

Assign TX/RX queue 

ibv_cmd_create_qp() 

QP connected 

QP Ready to recv 

RDMA CM Established Event 

RDMA Connect/Accept 

app 
Create QP 
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URDMA DATA TRANSFER 
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PERFORMANCE 
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PERFORMANCE: OVERVIEW 

 Two identical systems: 

• Supermicro SYS-6028R-T 

• 2 Intel Xeon ES-2630 v4 CPU @ 2.20GHz 

• 64 GB DDR4 RAM 

• PCIe generation 3 

• Ubuntu 16.10 with inbox 4.8 kernel 

• Intel XL710 40GbE NIC 

• Verbs and RDMA CM as supplied with Ubuntu 16.10 

 Applications used 

• perftest version 3.0+0.18.gb464d59-1 

• UNH EXS (Extended Sockets) 1.4.1 (https://www.iol.unh.edu/expertise/unh-exs) 
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urdma softiwarp 

 RAW VERBS: LATENCY 
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urdma softiwarp 

RAW VERBS: THROUGHPUT 
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urdma softiwarp 

UNH EXS: THROUGHPUT 
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CONCLUSION 
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URDMA SUMMARY 

 Existing software RDMA implementations done in kernel space 

 DPDK allows us to implement RDMA verbs data transfer in userspace 

• Eliminates all kernel involvement in data transfer path 

• Small kernel module for connection management 

 Runs unmodified verbs applications 

 Designed with performance in mind 

• Good small message latency 

• Needs tuning for  throughput 

 Future work 

• Investigate zero-copy transmit support 

• libfabric provider implementation 

• Reliable datagram support 
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URDMA DOWNLOAD AND STATUS 

 urdma development done on GitHub 

• https://github.com/zrlio/urdma 

 No formal release as of yet 

 Not integrated into rdma-core 

 Tested on Ubuntu 16.10 and DPDK 16.07 
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BACKUP 
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urdma on Intel XL710 Chelsio T580-LP-CR iWARP 

RAW VERBS: THROUGHPUT VS. HARDWARE RNIC 
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urdma on Intel XL710 Chelsio T580-LP-CR iWARP 

RAW VERBS: LATENCY VS. HARDWARE RNIC 
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