

13th ANNUAL WORKSHOP 2017

OPEN SOURCE NFS/RDMA ROADMAP

Chuck Lever, Linux Kernel Architect

Oracle Corporation

March 30, 2017

SYLLABUS

Today's topics

- Upstream accomplishments in 2016
- Challenges and opportunities
- Standards activity and what is motivating it

What I'm not going to cover

- Linux distribution features sets and delivery schedules
- Quantitative and comparative performance results
- Adoption rates

2016 OPEN SOURCE HIGHLIGHTS

NEW UPPER LAYER FEATURES

NFS version 4 minor version 1 and newer, with RDMA

- Integrated backchannel
- NFSv4.1 sessions
- pNFS (all layout types)
- NFSv4.2 features such as READ_PLUS, ALLOCATE, SEEK_HOLE
- Interoperates with Solaris NFSv4.1 prototype

NFS/RDMA with Kerberos

- krb5, krb5i, krb5p
- Full interop with Linux/Linux
- Limited interop for Linux/Solaris, more to come

PERFORMANCE AND SCALABILITY

- On-demand MR allocation
- SG_GAP support with FRWR
- In-place RDMA Send

Experimental features

- Remote Invalidation
- Large inline threshold
- Rudimentary transport property exchange

DEEPER TESTING

- Testing and development work now includes Linux server
- Distributed testing with a variety of NICs and fabrics
 - NIC vendors
 - Linux distributors

Platform diversity

- Still x86-64 only
- Gap: So far, no testing on ARM, PPC, SPARC, or z/390

IOMMU enables NFS/RDMA in guests

- DMA-API usage debugging
- Strict IOMMU settings

WIRESHARK IMPROVEMENTS

Already in v2.3.0rc

- Reliable RPC-over-RDMA frame detection
- RPC-over-RDMA transport header parsing is working
- Display filters available for transport header fields
- RPC call/reply matching improvements

Next steps

- Passing re-assembled RDMA_NOMSG messages up to RPC dissector
- Re-assembly of RDMA_MSG messages that include Read or Write chunks

MAGICAL PONIES

- Unstable NFS WRITEs ought to be nearly as fast as NFS READs
- One large client ought to reach a million IOPS
- NFS/RDMA is well-positioned to expose performance benefits of persistent memory
- RPC-over-RDMA ought to work efficiently on platforms with large pages

THERE BE DRAGONS

NFS I/O operations

- Current broadly deployed durable storage technologies still involve I/O on the NFS server
- Existing client RPC stacks depend on context switches and heavyweight locking
- RDMA Read requires an additional round trip
- Still only one QP per mount point

NFS small I/O and metadata operations

- Receive is typically not zero-copy
- The cost of providing a Reply chunk is usually wasted
- Explicit RDMA is used for frequent non-I/O requests
- Default inline threshold is 1KB

TRANSPORT PROTOCOL REALITIES

- Server cannot return oversized replies
- Canceled RPCs can result in connection loss / denial of service
- Can be difficult to match multiple result data items to Write chunks
- No in-band support for Remote Invalidation
- Incomplete support for reverse-direction RPC transactions
 - No RPC call direction indicated in the transport header
 - How to use chunks for reverse direction transactions

TRANSPORT PROTOCOL REALITIES

Credit accounting implementations assume one RPC (call and reply) per credit

- Non-antiphonal messages
- Retransmits
- Multiple RPC-over-RDMA messages per RDMA Send
- Multiple RDMA Sends per RPC message
- Distinct control plane and data plane

Extensibility is limited

- No extensibility without a version number bump
- No connection property exchange

RPCSEC GSS is not an ideal fit

- RPC-over-RDMA transport header fields are not protected
- Integrity and confidentiality require host CPU resources

HERE'S THE GOOD NEWS

NFSV4.1 MULTI-PATH CAPABILITIES

- Client ID and session trunking
 - Multiple network paths from one NFS client to one NFS server

NFSV4.1 MULTI-PATH CAPABILITIES

- Existing pNFS block layout type using RDMA-enabled block transports
 - iSER
 - SRP
 - NVMe on Fabrics

I dhin

NFSV4.1 MULTI-PATH CAPABILITIES

New pNFS layout type

- Similar to SMB "push mode" described by Talpey, et al
- NFS server registers persistent memory, returns R_keys in pNFS layouts
- NFS client accesses target persistent memory via explicit RDMA operations
- Avoids RPC, server host interrupts in I/O path
- User space clients might avoid local OS kernel interaction in I/O path

2017 FOCUS

Recovery

- Always disconnect on RPC time-out
- Handle DEVICE_REMOVAL events
 - Device hotplug
 - Device failover
 - Suspend/resume with active NFS/RDMA mounts

Kerberos interop

Server support for multi-chunk RPCs

Full stack performance

- Multi-pathing support
- Improve server Receive efficiency
- Relieve lock contention on client

Transition to RoCE

IETF AND NFS/RDMA STANDARDS

UPDATES OF EXISTING RFCS

RPC-over-RDMA Version One

- RFC 5666 (2010): defines the RPC transport layer behavior
- Document update: document existing implementation behavior and clarify interop issues
- Status: update headed to RFC Editor

RPC-over-RDMA bidirectional operation

- New RFC: enables reverse-direction RPC calls on RPC-over-RDMA
- Purpose: enable NFSv4.1 on RPC-over-RDMA
- Status: new doc headed to RFC Editor

NFS binding to RPC-over-RDMA Version One

- RFC 5667 (2010): specifies how NFS protocols use RPC-over-RDMA
- Document update: document existing implementation behavior and finish support for NFSv4.1
- Status: document being completed in nfsv4 Working Group

NEW DIRECTIONS

Client multi-path discovery

- New I-D that defines in-band mechanism for discovering NFS server network interface capabilities
- Enables client ID and session trunking using any transport

RPC-over-RDMA CM private data

- New I-D that defines mechanism for exchanging transport properties during connection set-up
- Enables RPC-over-RDMA Version One peers to discover support for large inline thresholds, etc.

RPC-over-RDMA Version Two

- New I-D that specifies new version of RPC-over-RDMA
- Adds transport protocol support for
 - Remote Invalidation
 - Larger default inline thresholds
 - Rich error reporting
 - Protocol extensibility

RPC-OVER-RDMA VERSION TWO EXTENSIONS

In-band connection property exchanges and updates

• Enables discovery and modification of connection properties such as inline threshold

Message Continuation

• Enables sending RPC messages that span multiple RDMA Sends

"Send-based Direct Data Placement"

- Transfers payloads eligible for Direct Data Placement using only RDMA Send
- Enables some forms of zero-copy Receive

Responder-provided Read chunks

- Enables servers to return arbitrarily large replies without a Reply chunk
- Eliminates need for client to provide Reply chunk for reply that is likely going to be small

REMAINING WORK

- Generic zero-copy Receive
- Credit accounting improvements
- Handling canceled RPCs without risking connection loss
- Multiple Read and Write chunks per RPC
 - Matching results to Write chunks
 - Few NFSv4 clients generate COMPOUNDs with multiple payload-bearing operations
 - Few NFS/RDMA clients generate COMPOUNDs with multiple chunks

Security with offload

- Protection for transport header fields
- Cooperation with offloaded security implementations

13th ANNUAL WORKSHOP 2017

THANK YOU Chuck Lever, Linux Kernel Architect Oracle Corporation