THE LINUX SOFTROCE DRIVER

Liran Liss
Mellanox Technologies
March, 2017
AGENDA

- Introduction
- The RXE driver
- Development status and availability
- Configuring and using SoftRoCE
- Future work
INTRODUCTION

- **SoftRoCE is a software implementation of the IBTA RoCEv2 specification**
 - RDMA transport services over Ethernet network

- **Use cases**
 - Development
 - Testing
 - Asymmetric deployments
 - E.g., software clients connecting to hardware high-performance servers

ROCEv2 Packet Format

<table>
<thead>
<tr>
<th></th>
<th>Eth L2</th>
<th>IP</th>
<th>UDP</th>
<th>BTH+</th>
<th>Payload</th>
<th>iCRC</th>
<th>FCS</th>
</tr>
</thead>
</table>

Network Protocols

Infiniband

- Link layer
- IB Network Layer
- Infiniband Link Layer
- Infiniband Management

Ethernet/IP

- Link layer
- Ethernet Link Layer
- Ethernet/IP Management

RDMA Transport

- IB Network Layer
- Infiniband Link Layer
- Infiniband Management
RXE DRIVER

- **Standard RDMA provider**
 - Kernel rdma_rxe module
 - User-space librxe library

- **Kernel transport**
 - Supports both kernel ULPs and applications
 - Asynchronous progress
- **Kernel-allocated / user-mapped queues**
 - User-space prepares WQEs
 - System calls used only for send doorbells
 - No system calls for
 - Polling completions
 - Posting receive WQEs

- **Pinned memory regions**
 - Data copied in/out of buffers from any context

- **Per-QP tasklets**
 - Requester
 - Responder
 - Completer
Initial driver developed by System Fabrics Works

Restarted as Open-Source Github project in 2014

Driver submitted upstream and accepted in 2016
• Available from Kernel 4.8
• config RDMA_RXE

Library included in rdma-core repo

Bug fixes
• Logic and Semantics
 • Support 0-byte operations
 • Update work queue state before generating completion
 • Response PSN should increase monotonically
 • Correctly handle erroneous WQEcs
 • Correctly handle duplicate atomic requests
• Memory leaks and reference counts
 • Bad socket ref-count
 • QP ref-count while running tasklets
 • Freeing packets in some error flows
• Races
 • QP state update vs. sending out skbs
 • Packet processing vs. QP teardown

Performance improvements (ongoing)
STATUS

- **Features**
 - UD, RC, and UC transports
 - SRQ
 - Atomics support
 - Multicast
 - Fast registration, local/remote invalidate

- **ULPs and applications**
 - Low-level Verbs testing
 - RDMACM tests
 - Perftest
 - iSER initiator + target

- **Test configurations**
 - Bare-metal NIC
 - SRIOV VF

- **Interoperability**
 - Validated successfully with HW RoCE
 - ConnectX-3
 - ConnectX-4
AVAILABILITY

- **Linux distributions (planned)**
 - Redhat / CentOS 7.4
 - Ubuntu 17.10

- **Mellanox OFED**
 - Included in MOFED 4.0
 - Based on Kernel 4.9
 - Backports for Kernel 4.8
 - May be installed on Ubuntu 16.10
 - Forward-ports for Kernel 4.10
 - May be installed on Ubuntu 17.04
Once installed, RXE is managed via ‘rxe_cfg’ tool

- Start / stop RXE driver stack
- Add / remove / show configured devices
- Configured interfaces are persisted at /var/rxe/rxe

NAME

rxe_cfg - rxe configuration tool for RXE (Soft RoCE)

SYNOPSIS

rxe_cfg [status]
rxe_cfg start [-p proto]
rxe_cfg stop
rxe_cfg persistent
rxe_cfg add [-n] ethN
rxe_cfg remove [-n] ethN|rxeN
rxe_cfg crc enable|disable
rxe_cfg mtu [-f] [rxeN] mtu_size
dev-l-vrt-097:/kernel=> sudo rxe_cfg start
Name Link Driver Speed NMTU IPv4_addr RDEV RMTU
eno2 yes igb
enp17s0 yes mlx5_core
eth0 no mlx4_en

dev-l-vrt-097:/kernel=> #sudo rxe_cfg add enp17s0

dev-l-vrt-097:/kernel=> #sudo rxe_cfg status

dev-l-vrt-097:/kernel=> sudo rxe_cfg start
Name Link Driver Speed NMTU IPv4_addr RDEV RMTU
eno2 yes igb
enp17s0 yes mlx5_core rxe0 1024 (3)
eth0 no mlx4_en
dev-l-vrt-097:/kernel=> ip addr show dev enp17s0
8: enp17s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP qlen 1000
 link/ether 7c:fe:90:75:3e:20 brd ff:ff:ff:ff:ff:ff
 inet 11.134.97.1/16 brd 11.134.255.255 scope global enp17s0
...
IT'S JUST ROCE...

```
local address: LID 0x0000, QPN 0x000011, PSN 0xc0ffee, GID ::ffff:11.134.146.5
remote address: LID 0x0000, QPN 0x00000ea, PSN 0xc0ffee, GID ::ffff:11.134.145.5
1024 bytes in 0.00 seconds = 26.60 Mbit/sec
1 iters in 0.00 seconds = 308.00 usec/iter
```
FUTURE WORK

Features

- **RDMA features**
 - Memory windows
 - On-demand-paging
 - SRQ resizing
 - XRC

- **Congestion control**
 - Flow fairness
 - Lossy networks

- **Container support**
 - Should come for free once RoCE network namespace support is completed
FUTURE WORK
Optimizations

- **0-copy for all transmitted packets**
 - Leverage the fact that MRs are pinned
 - Applies to
 - Send / RDMA-W packets
 - RDMA-R response packets
 - For UD, generate completions when skbs are destroyed
 - Rather than when enqueing copied skbs
 - Note: still need to go over all the data for CRC calculation

- **Efficient 1-copy for all received packets**
 - Remove *completely* any skb re-queuing
 - Scatter data to MR directly from NAPI context
 - Combine with CRC calculation
FUTURE WORK

Optimizations

- **Per-CPU execution context**
 - Replace existing per-QP tasklets for sender/responder/completer tasks

- **Transmit packet batching**
 - Output a batch of skbs as a list
 - Results in skb->xmit_more in netdev

- **Cache route for connected QPs**
 - Eliminates FIB lookup on each packet
 - Similar to TCP sockets

- **Use synchronous hash crypto driver for CRC calculations**
 - E.g., use crc32-pclmul driver on x86

- **Select different UDP source ports for each QP**
 - Utilize all NIC transmission queues
 - Leverage ECMP in the network
13th ANNUAL WORKSHOP 2017

THANK YOU

Liran Liss

Mellanox Technologies