
13th ANNUAL WORKSHOP 2017  

VERBS KERNEL ABI
Liran Liss, Matan Barak

[March 27th, 2017 ]
Mellanox Technologies LTD



OpenFabrics Alliance Workshop 2017

AGENDA

 System calls and ABI
• The RDMA ABI challenge

• Usually abstract HW details
• But RDMA is all about exposing HW to user-space!

 Current ABI
• Security concern
• Feature diversity and tough extensibility
• Code duplication

 New proposed ABI
• Object oriented model
• Using parse tree
• device specific entities
• More shared code
• Maintaining backward compatibility

 Summary

2



OpenFabrics Alliance Workshop 2017

SYSTEM CALLS AND ABI

 Usually abstract HW details
 But RDMA is all about exposing HW to user-space!



OpenFabrics Alliance Workshop 2017

SYSTEM CALLS AND ABI

4

Hardware

Kernel driver

RDMA core

libibverbs Vendor extensions

Verbs

Middleware abstraction

Abstract API

Application

Extended
Verbs

Socket abstraction

User Space Driver

Kernel ABI

HW Specific 
abstraction

User space driver



OpenFabrics Alliance Workshop 2017

THE RDMA CORE FRAMEWORK

 Dispatching handles
 Validating parameters
 Resource tracking
 Mapping user handles to kernel objects
 Common code
 Resource cleanup upon process termination
 Ensure backward and forward compatibility

5



OpenFabrics Alliance Workshop 2017

THE CURRENT ABI

 Well-defined objects
• QPs
• CQs
• SRQs
• MRs and MWs
• AHs
• PDs

 Well-defined actions (methods)
• E.g., create, modify

 Well-defined attributes

 device specific attributes in existing verbs

6



OpenFabrics Alliance Workshop 2017

SECURITY CONCERNS

 write() syscalls are inappropriate for providing parameters
 Keep write semantics, and use IOCTLs for control

CVE-2016-4565

A flaw was found in the way certain interfaces of the Linux kernel's Infiniband subsystem used write() as bi-directional ioctl()
replacement, which could lead to insufficient memory security checks when being invoked using the splice() system call. A local
unprivileged user on a system with either Infiniband hardware present or RDMA Userspace Connection Manager Access module
explicitly loaded, could use this flaw to escalate their privileges on the system.
Source: https://access.redhat.com/security/cve/CVE-2016-4565

From: Jason Gunthorpe <jgunthorpe at obsidianresearch.com>

The drivers/infiniband stack uses write() as a replacement for bi-directional ioctl(). This is not safe. There are ways to trigger write
calls that result in the return structure that is normally written to user space being shunted off to user specified kernel memory
instead.
For the immediate repair, detect and deny suspicious accesses to the write API.
For long term, update the user space libraries and the kernel API to something that doesn't present the same security
vulnerabilities (likely a structured ioctl() interface).
The impacted uAPI interfaces are generally only available if hardware from drivers/infiniband is installed in the system.



OpenFabrics Alliance Workshop 2017

RDMA EXTENSIBILITY

 Evolution of the specification
• New transports (e.g., XRC)
• New memory models
• New features

 Evolution of Linux
• Demand paging for IO
• Raw Ethernet queues

 Evolution of HW
• Optimizations
• Features

Different devices 
implement different 

feature subsets

Thin abstraction layer in ABI to minimize performance cost



OpenFabrics Alliance Workshop 2017

RDMA EXTENSIBILITY

 Extend to new features, but still need to maintain forward and backward compatibility
 Hard to extend existing verbs (methods) while maintaining backward compatibility

Problem 1: Cumbersome method extension – Maintaining backward compatibility

New user-space libraries Old user-space libraries

New kernel

Old kernel

* user-space libraries: both abstraction library (libibverbs) and the user-space device drivers



OpenFabrics Alliance Workshop 2017

RDMA EXTENSIBILITY

 Different parts the standard part and device specific part
 Extending by growing structures

• When a field is added, it’s always passed to the kernel  No optional attributes
• Maintaining backward and forward compatibility requires a lot of non-trivial

offset calculations and checks:

Problem 1: Cumbersome method extension - – Maintaining backward compatibility

/* Check that the command is supported by the kernel (all bits are known) */
if (cmd.comp_mask & ~ALLOWED_COMP_MASK_BITS ||

(uverbs_cmd_size > sizeof(cmd) &&
memchr_inv((void *)cmd + sizeof(cmd), 0,

uverbs_cmd_size - sizeof(cmd)))
return –EOPNOTSUPP;

/* FOR EVERY COMMAND FIELD: check that the user gave us this new field */
if (uverbs_cmd_size >= offsetof(struct cmd, newfld) + 

sizeof(cmd.newfld)) {
Handle_new_fld(cmd.newfld);

}

/* FOR EVERY RESPONSE FIELD */
if (cmd.resp_size > offsetof(struct resp, resp_fld) + sizeof(resp.resp_fld)) {

resp.response_length = offsetof(struct resp, resp_fld) + sizeof(resp.resp_fld)
resp.resp_fld = some_value;

}

copy_to_user(cmd.resp, resp, resp.response_length);

1. Familiar with all comp_mask bits
2. If the given command is bigger to what is known to 

the kernel, the rest are zeroes.

Is this command field part of the given command?

Is this response field part of the allocated user-space 
response?

Verbs part Verbs part

New field

Hardware part

Hardware part

[1]
Add the new field
* (comp_mask bit)

New field



OpenFabrics Alliance Workshop 2017

RDMA EXTENSIBILITY
Problem 2: Feature diversity – When simple extensions are not enough

Could be abstracted in a 
reasonable acceptable way

Tightly coupled with the 
device, can’t abstract

Abstraction is possible, but 
performance penalty is high

Abstraction set the standard 
for other devices. This 

device is very different.

Add feature



OpenFabrics Alliance Workshop 2017

RDMA EXTENSIBILITY

 Feature diversity
• Currently single flat namespace
• Many optional APIs and device features

• Different vendors implementing different subsets

Problem 2: Feature diversity – When simple extensions are not enough

Common objects – Agreeable abstractions

Drivers

Objects



OpenFabrics Alliance Workshop 2017

RDMA EXTENSIBILITY

 Feature diversity
• Currently single flat namespace
• Many optional APIs and device features

• Different vendors implementing different subsets
• Allow vendors to expose unique device capabilities

• Device-specific optimizations aggravates the problem

Problem 2: Feature diversity – When simple extensions are not enough

Common objects – Agreeable abstractions Device
Specific objects

Drivers

Objects

No way to add a device unique objects!

Device 
specific 

abstraction!

Some new 
features are 
device 
dependent and 
can’t be 
abstracted (or 
at high cost!)



OpenFabrics Alliance Workshop 2017

RDMA EXTENSIBILITY

 A one generic method to parse headers
 Every verb (method) parses its command and objects

by using a careful hand crafted code
 A lot of work to add a new verb
 Potential bugs!
 Some of the code could be changed

to a shared mechanism

Problem 3: Duplicate code between verbs handlers

Parse header

Parse command

Validate command

Transform user 
objects to kernel 

objects
Transform user 

command to 
kernel command
Execute driver’s 

handler

Write response

Parse command

Validate command

Transform user 
objects to kernel 

objects
Transform user 

command to 
kernel command
Execute driver’s 

handler

Write response

Parse command

Validate command

Transform user 
objects to kernel 

objects
Transform user 

command to 
kernel command
Execute driver’s 

handler

Write response

Verb 3Verb 2Verb 1

Commit objects 
changes

Commit object 
schanges

Commit objects 
changes

A lot of parts here are duplicated!



OpenFabrics Alliance Workshop 2017

THE NEW ABI

 Security
• Move to IOCTL system call

 Extensibility
• Solving cumbersome extensions

• Move to TLVs (Type-Length-Value) attributes
• Solving feature diversity

• Move to object oriented schema – Scales better
• Define Objects, Methods and attributes per device
• Parsing is done according to a specific driver and device requirements

 Code sharing
• Infrastructure to take care of most hand crafted code:

• Parsing
• Syntax validation
• Transform user-space objects to kernel objects

• Keep the notion of standard objects, methods and attributes share the same code



OpenFabrics Alliance Workshop 2017

EXTENDIBILITY

 Replace current global method table with a hierarchy of entities:
• Objects

• Actions
• Attributes

 Each layer in the hierarchy has:
• Standard entities  
• Device specific

entities Allocation size
Destroy function
Release order

Standard actions

Hardware specific actions

Standard action 1

Standard action 2

HW action 1

HW action 2

Standard attribute 1

Standard attribute 2

HW attribute 1

HW attribute 1

HW attribute 2

Object

Actions

Actions

Attributes

Attributes



OpenFabrics Alliance Workshop 2017

THE PARSE TREE

Device specific root parse tree

Object group 1 [STANDARD]

Object

Action group 1

Action 1

Attribute group 1

Attribute 
1

Attribute 
2

Attribute group 2 
[DEV Specific]

Attribute 
1

Attribute 
2

Action group 2 [DEV 
Specific]

Action 1

Attribute group [DEV 
Specific]

Attribute 
1

Attribute 
2

Object group 2 [DEV 
SPECIFIC]

Object

Group 1 [DEV 
Specific]

Action 1

Group 1 [DEV 
Specific]

Attribute 
1

Attribute 
2

• Objects, methods and 
attributes are represented in 
kernel by a per-device parse 
tree.

• Every layer in the parse tree 
has 2 groups:

• Standard entities
• Device specific entities

• Allows to extend standard 
objects with device specific

• Actions
• Attributes

• Allows to have device specific 
objects



OpenFabrics Alliance Workshop 2017

ATTRIBUTE TLVS

 Passing Type-Length-Value based attributes
 Attribute classes

• IDR user object handle (e.g., QP, CQ)
• FD user object handle (e.g., completion channel)
• Pointer input (pointer to a command part)
• Pointer out (pointer to response part)
• Flags (group of bits)

 Attributes can be either common or device-specific
 The user-space passes an array of attributes in any order.

Verbs part

Hardware part

Type/Length/Value Type/Length/Value Type/Length/Value Type/Length/Value

Standard TLVs Device specific TLVs

Type Length
Value
• Pointer In (command)
• Pointer Out (response)
• Small value in (command)
• IDR based object
• FD based object
• Future: Flag



OpenFabrics Alliance Workshop 2017

PARSE TREE SYNTAX – OBJECTS AND ACTIONS

int uverbs_alloc_pd_handler(struct ib_device *ib_dev, struct ib_uverbs_file *file, struct uverbs_attr_array *ctx,
size_t num); /* Action Handle */

DECLARE_UVERBS_TYPE(uverbs_type_pd,
/* 2 is used in order to free the PD after MRs */
&UVERBS_TYPE_ALLOC_IDR(2, uverbs_free_pd),
&UVERBS_ACTIONS(

ADD_UVERBS_ACTION(UVERBS_PD_ALLOC,
uverbs_alloc_pd_handler,
&uverbs_alloc_pd_spec,
&uverbs_uhw_compat_spec),

ADD_UVERBS_ACTION(UVERBS_PD_DEALLOC,
uverbs_dealloc_pd_handler,
&uverbs_dealloc_pd_spec)));

DECLARE_UVERBS_TYPES(uverbs_common_types,
ADD_UVERBS_TYPE(UVERBS_TYPE_DEVICE, uverbs_type_device),
ADD_UVERBS_TYPE(UVERBS_TYPE_PD, uverbs_type_pd),

);

Parse tree is defined in kernel using DSL (domain specific language):

Object 
enum Object 

spec

Action 
enum Action 

handler

Common 
attributes group

Device specific 
attributes group



OpenFabrics Alliance Workshop 2017

Define the attribute group:

DECLARE_UVERBS_ATTR_SPEC(
uverbs_alloc_pd_spec /* Name of spec */,
UVERBS_ATTR_IDR(ALLOC_PD_HANDLE, UVERBS_TYPE_PD,

UVERBS_IDR_ACCESS_NEW));

DECLARE_UVERBS_ATTR_SPEC(
uverbs_query_device_spec /* Name of spec */,
UVERBS_ATTR_PTR_OUT(QUERY_DEVICE_RESP, struct ib_uverbs_query_device_resp,

UA_FLAGS(UVERBS_ATTR_SPEC_F_MANDATORY)),
UVERBS_ATTR_PTR_OUT(QUERY_DEVICE_ODP, struct ib_uverbs_odp_caps),
UVERBS_ATTR_PTR_OUT(QUERY_DEVICE_TIMESTAMP_MASK, __u64),
UVERBS_ATTR_PTR_OUT(QUERY_DEVICE_HCA_CORE_CLOCK, __u64),
UVERBS_ATTR_PTR_OUT(QUERY_DEVICE_CAP_FLAGS, __u64));

Attribute 
number

Attribute size 
(validated 

automatically)

IDR 
object

Attribute that the 
user must pass 

(validated 
automatically)

Attribute 
group name

RDMA core has all the information it needs for parsing, syntax validation and objects transforming

PARSE TREE SYNTAX – ATTRIBUTES



OpenFabrics Alliance Workshop 2017

PARSE TREE MERGING

 Core RDMA features are described by a core parse tree
• Implemented by every device

 Every feature is described by a dedicated parse tree
• Serves as the feature ABI specification

 Every device indicates the feature parse trees that it supports
• Upon initialization, the parse trees are merged

Core object model Feature A Feature B Merged tree



OpenFabrics Alliance Workshop 2017

CODE SHARING

Parse header

Parse command

Validate command

Transform user 
objects to kernel 

objects
Transform user 

command to 
kernel command
Execute driver’s 

handler

Write response

Parse command

Validate command

Transform user 
objects to kernel 

objects
Transform user 

command to 
kernel command
Execute driver’s 

handler

Write response

Parse command

Validate command

Transform user 
objects to kernel 

objects
Transform user 

command to 
kernel command
Execute driver’s 

handler

Write response

Verb 3Verb 2Verb 1

Parse header

Parse command

Validate command

Transform user 
objects to kernel 

objects

DEV 1
Parse 
tree

DEV 2
Parse 
tree

Commit objects 
changes

Commit objects 
changes

Commit objects 
changes

Commit objects 
changes

Transform user 
command to 

kernel command
Execute driver’s 

handler

Write response

Transform user 
command to 

kernel command
Execute driver’s 

handler

Write response

Current state The new ABI



OpenFabrics Alliance Workshop 2017

CODE SHARING

 The infrastructure is responsible for
• Parsing and validating the command header
• Parsing the command attributes

• IDR/FD  Transform to kernel object
• Pointer IN/OUT Validate the size
• Allocate require objects
• Check that all mandatory objects were passed from user-

space
• Kernel objects locks
• Commit the required objects

• Allocate objects
• Destroy objects

• Re-order the attributes to match the kernel defined order

Infrastructure for parsing, validation and object transforming

Parse header

Parse command

Validate command

Transform user 
objects to kernel 

objects

DEV 1
Parse 
tree

DEV 2
Parse 
tree

Commit objects 
changes

Transform user 
command to 

kernel command
Execute driver’s 

handler

Write response

Transform user 
command to 

kernel command
Execute driver’s 

handler

Write response



OpenFabrics Alliance Workshop 2017

MAINTAINING BACKWARD COMPATIBILITY

 For the foreseeable future, maintain the write() system-call
 Implement by transforming the command to the ioctl() style
 Straightforward mapping of existing ABI

• Flexible extensions for new functions and object types

 In context teardown
• Release objects according to the release order defined in the parse tree

• Reason: Sometimes we bind/unbind objects in user-space/hardware. For example, MW could created before its 
bounded MR, as the binding is done via user-space and the unbind could be done even only in hardware. Thus, 
destroy all MWs before MRs.



OpenFabrics Alliance Workshop 2017

SUMMARY

 Addresses the security concerns
 Provides an extendible mechanism

• Standard code
• Device specific actions and attributes in standard objects
• Device specific objects

 More maintainable
• Infrastructure for automatic parsing, validation and transformation
• Less error prone

 Asynchronous interface (FD based objects)
• Allow future extensions to support an asynchronous interface in a standard manner

 Enable vendors to easily introduce new features and optimizations
 Proper process teardown



13th ANNUAL WORKSHOP 2017  

THANK YOU
Liran Liss, Matan Barak

Mellanox Technologies LTD



OpenFabrics Alliance Workshop 2017

HANDLER EXAMPLE
int uverbs_create_cq_handler(struct ib_device *ib_dev, struct ib_uverbs_file *file,

struct uverbs_attr_array *ctx, size_t num)
{

struct uverbs_attr_array *common = &ctx[0];
struct ib_ucontext *ucontext = file->ucontext;
struct ib_ucq_object *obj;
struct ib_udata uhw;
int ret;
u64 user_handle = 0;
struct ib_cq_init_attr attr = {};
struct ib_cq *cq;
struct ib_uverbs_completion_event_file *ev_file = NULL;

/* COPY MANDATORY ATTRIBUTES */
ret = uverbs_copy_from(&attr.comp_vector, common, CREATE_CQ_COMP_VECTOR);
ret = ret ?: uverbs_copy_from(&attr.cqe, common, CREATE_CQ_CQE);
if (ret)

return ret;

/* Optional params, if they don't exist, we get -ENOENT and skip them */
if (uverbs_copy_from(&attr.flags, common, CREATE_CQ_FLAGS) == -EFAULT ||

uverbs_copy_from(&user_handle, common, CREATE_CQ_USER_HANDLE) == -EFAULT)
return -EFAULT;

/* Get completion channel if given */
if (uverbs_is_valid(common, CREATE_CQ_COMP_CHANNEL)) {

struct ib_uobject *ev_file_uobj =
common->attrs[CREATE_CQ_COMP_CHANNEL].obj_attr.uobject;

ev_file = container_of(ev_file_uobj,
struct ib_uverbs_completion_event_file,
uobj_file.uobj);

kref_get(&ev_file_uobj->ref);
}

/* Temporary, only until drivers get the new uverbs_attr_array */
create_udata(ctx, num, &uhw);

/* Handler logic from here */
if (attr.comp_vector >= ucontext->ufile->device->num_comp_vectors)

return -EINVAL;

obj = container_of(common->attrs[CREATE_CQ_HANDLE].obj_attr.uobject,
typeof(*obj), uobject);

obj->uverbs_file = ucontext->ufile;
obj->comp_events_reported = 0;
obj->async_events_reported = 0;
INIT_LIST_HEAD(&obj->comp_list);
INIT_LIST_HEAD(&obj->async_list);

cq = ib_dev->create_cq(ib_dev, &attr, ucontext, &uhw);
if (IS_ERR(cq))

return PTR_ERR(cq);

cq->device        = ib_dev;
cq->uobject = &obj->uobject;
cq->comp_handler = ib_uverbs_comp_handler;
cq->event_handler = ib_uverbs_cq_event_handler;
cq->cq_context = &ev_file->ev_file;
obj->uobject.object = cq;
obj->uobject.user_handle = user_handle;
atomic_set(&cq->usecnt, 0);

/* Write response to user space */
ret = uverbs_copy_to(common, CREATE_CQ_RESP_CQE, &cq->cqe);
if (ret)

goto err;

return 0;
err:

ib_destroy_cq(cq);
return ret;

};


	Verbs kernel abi
	Agenda
	System calls and ABI
	System Calls and ABI
	The RDMA Core Framework
	The current abi
	Security Concerns
	RDMA Extensibility
	RDMA Extensibility
	RDMA Extensibility
	RDMA Extensibility
	RDMA Extensibility
	RDMA Extensibility
	RDMA Extensibility
	The new abi
	extendibility
	The Parse Tree
	Attribute TLVs
	Parse tree syntax – objects and actions
	Slide Number 20
	Parse tree merging
	Code Sharing
	Code Sharing
	Maintaining backward compatibility
	Summary
	THANK YOU
	Handler example

