
13th ANNUAL WORKSHOP 2017

IPOIB ACCELERATION
Tzahi Oved, Rony Efraim

[March, 2017]
Mellanox Technologies

OpenFabrics Alliance Workshop 2017

AGENDA

 IPoIB as ULP
 Acceleration Goals
 Architecture
 Why vendor driver
 Packet Flows
 Kernel verbs API update – initial proposal
 Kernel verbs API update – current proposal
 ULP event handling
 Performance
 Summary

OpenFabrics Alliance Workshop 2017

IPOIB AS ULP

 Encapsulate IP frames over IB transport
 IPoIB net_device is implemented as Upper

Layer Protocol (ULP)
 Underlying API is the Kernel Verbs API
 Supports both unconnected (UD) and

Connected (RC) modes
 Use SA, CM and MAD services

• Path query
• Multicast membership (Join/Leave)
• Communication Manager for IPoIB RC
 Only CSUM, LSO offloads are currently

supported
 Any feature must be supported through kernel

Verbs API
• Stateless offload
• Device management and diagnostics (ethtool)

Application

IPoIB ULP
net_dev

TCP/IP Kernel Stack

mlx_ib

Ib_core

Sockets

Stateless Offloads Engine

NIC

U

K

UD QP

Transmit
Flow

Tables

Receive
Flow

Tables

OpenFabrics Alliance Workshop 2017

ACCELERATION GOALS

 Allow vendors to optimize IPoIB data path
• Stateless offloads

• LRO, aRFS, RSS, TSS, ..
• Multi-queue support – all queues to share same transport

• Interrupt moderation
• Tunneling offloads
• Multi partitions optimizations

• Share send/recv Work Queues across multiple pkeys
• Vendor specific optimizations

• Work queue processing
 net_device management

• ethtool_ops
 Avoid bloating kAPI
 Leverage IPoIB ULP code as much as possible
 Support UD IPoIB mode only

• No plans to support IPoIB Connected Mode (RC)
 Generic ULP code – support “Legacy” mode

• No accelerated mode support
• Same ULP fully supports non accelerated providers

4

OpenFabrics Alliance Workshop 2017

ARCHITECTURE

 Separate functionality into management and data paths
 Management requirements (IPoIB)

• Interface registration
• Multicast management
• Event processing

• LID change, SM LID change
• Logical link state
• Path resolution and path cache management
• Address resolution (IB ARP)

 Data path requirements (Driver)
• Multi-queue support
• Buffering
• Receiving packets
• Sending packets

5

IPoIB

Mgt
Accel.

ib_core

Driver

Std.

Data path

OpenFabrics Alliance Workshop 2017

WHY VENDOR DRIVER

 Allow HW specific optimizations for data path
• Not bound by Verbs API semantics

 HW agnostic API requires HW agnostic call parameters
• Requires extra conversion from HW structures (WQE, CQE) to API intermediate structures and then to application specific

structures

 HW agnostic API requires HW specific provider callbacks
• Using function pointers to register provider code costs pointer dereference
• Using functions requires instruction memory pre-emption

 Minimize parameters size
• Using general WQE (ibv_send_wr, ibv_recv_wr), CQE (ibv_wc) access calls results is large and redundant data structures

allocation and reference
• Need to use only necessary data and as near as possible, possible in the same cache line

 Instruction memory cache utilization
• Generic code results in large functions which require more cache lines utilization

 Compile time code optimizations
• Using function calls for HW structures access blocks the compiler to perform code optimizations for driver+HW access code

OpenFabrics Alliance Workshop 2017

PACKET FLOWS

 TX
• ULP

• Resolve L2 address (IB ARP)
• Resolve address path and pass AH

attributes

• Vendor Driver
• Select TX queue
• Build send WQE out of the send skb

and post_send
• Transmit CQE processing
• Free skb

 RX
• Vendor Driver

• Receive CQE processing
• Receive WQ processing

• NAPI
• Call netif_receive_skb

• skb allocation and post_recv

OpenFabrics Alliance Workshop 2017

IPOIB ULP MULTICAST FLOW

 Join IPoIB “Broadcast” MGID
• On ULP initialization join default multicast MGID per IPoIB device pkey
• Result will include the IPoIB qkey to be used with IPoIB QP

 On MC send
• ULP to join corresponding MC group towards the SM through Multicast Join request
• Use Send Only member attribute
• Follow with Attach Multicast local request to attach the corresponding MGID to IPoIB QP
• According to aging scheme call Multicast Leave

 On MC receive
• Net_device->mc_list is updated with new MC address
• ULP to join corresponding MC group towards the SM through Multicast Join request
• Use full member attribute
• On revoke of the MC address from mc_list call corresponging Multicast Leave

 Join/Leave once per port

OpenFabrics Alliance Workshop 2017

KERNEL VERBS API UPDATE – INITIAL PROPOSAL

 Extend Kernel Verbs to allow query of struct ipoib_ops
• Dependent on per vendor support
• Allows each vendor to export it’s own calls
 Struct ipoib_ops to expose only selected vendor accelerated calls

struct ipoib_ops {
struct net_device * (*create_netdev)(struct ib_device *hca, const char *name);
int (*update_netdev_settings) (struct net_device *dev);
int (*ib_dev_init)(struct net_device *dev, uint *qp_num);

void (*ib_dev_open) (struct net_device *dev);
void (*ib_dev_stop) (struct net_device *dev);

int (*set_qkey)(struct net_device *dev)
int (*attach_mcast)(struct net_device *dev , union ib_gid *gid, u16 lid, int
set_qkey);
int (*dettach_mcast)(struct net_device *dev , union ib_gid *gid, u16 lid);
int (*send) (struct net_device *dev, struct sk_buff *skb,

struct ib_ah *address, u32 qpn);

void (*ib_dev_cleanup)(struct net_device *dev);
};

OpenFabrics Alliance Workshop 2017

KERNEL VERBS API UPDATE – CURRENT PROPOSAL

 Kernel verbs to support
alloc_rdma_netdev()
call to get vendor
initialized struct
net_device
 Each vendor can

implement it’s own
optimized net_dev
operations (net_dev ndo)
• Dependent on per vendor

support
• Allows each vendor to export it’s

own callbacks

 rdma_netdev to include
ipoib multicast
management calls

New struct ib_device call:
struct net_device *(*alloc_rdma_netdev)(

struct ib_device *device,
u8 port_num,
enum rdma_netdev_t type,
const char *name,
unsigned char name_assign_type,
void (*setup)(struct net_device *));

void (*free_rdma_netdev)(struct net_device *netdev);

struct rdma_netdev {
void *clnt_priv;

/* control functions */
void (*set_id)(struct net_device *netdev, int id);
int (*attach_mcast)(struct net_device *dev , union ib_gid

*gid, u16 lid, int set_qkey, u32 qkey);
int (*dettach_mcast)(struct net_device *dev , union ib_gid

*gid, u16 lid);
int (*send) (struct net_device *dev, struct sk_buff *skb,

struct ib_ah *address, u32 qpn);
};

OpenFabrics Alliance Workshop 2017

IPOIB ULP INITIALIZATION FLOW

 On IPoIB ULP initialization call
alloc_rdma_netdev()
• Verify ib_device provider support for enhanced mode
• Extract enhanced mode provider calls

• Extract rdma_netdev from netdev_priv()

 ULP may update net_dev ndo and other
parameters/function in struct net_device
 Use returned struct net_device to register

standard OS network I/F
• register_netdevice()

struct netdev {
net_device_ops
ethtool_ops

ipoib_nedev_priv
struct rdma_netdev {

*clnt_priv;
(*set_id)
(*attach_mcast)
(*dettach_mcast)
(*send)

netedv_priv()

OpenFabrics Alliance Workshop 2017

EVENT HANDLING

Event ULP Driver

Interface up/down V

Physical port up/down V

Carrier up/down V

Client Reregister V

PKey change V

MTU change V

Tx timeout V

Select queue V

Tx queue management (netif_wake/stop_queue, polling) V

Rx queue management (NAPI, polling, buffer allocation) V

OpenFabrics Alliance Workshop 2017

PERFORMANCE

 Standard IPoIB
• BW max at 36Gbps
• CPU bound

 Accelerated IPoIB BW
• Saturate line rate of 100G EDR link

• With >=4 streams
• Scales with number of cores

OpenFabrics Alliance Workshop 2017

SUMMARY

 Using single call extension to ib_device to extract vendor specific enhanced calls
 Reuse the good old struct net_device to allow most flexibility for vendor calls
 Net additions to struct net_device can transparently be overloaded with new ib_device

providers
 Keep ULP code generic - allow backward compatibility of the same ULP to older

provider
• Legacy support for “non enhanced” providers

 Allow optimized data path while reuse and share existing control path

13th ANNUAL WORKSHOP 2017

THANK YOU
Tzahi Oved & Rony Efraim

COMPANY Mellanox

[LOGO HERE]

	IPoIB Acceleration
	Agenda
	IPoIB as ULP
	Acceleration Goals
	Architecture
	Why vendor driver
	Packet Flows
	Ipoib ULP multicast flow
	kernel verbs API update – initial proposal
	kernel verbs API update – current proposal
	Ipoib ULP initialization flow
	Event handling
	Performance
	Summary
	THANK YOU

