
13th ANNUAL WORKSHOP 2017

USER SPACE IPOIB PACKET PROCESSING
Tzahi Oved, Alex Rosenbaum

[March, 2017]
Mellanox Technologies

OpenFabrics Alliance Workshop 2017

AGENDA

 Motivation for extending IPoIB user space processing
 Progress of Eth user space processing
 Status update on Eth user space processing
 IPoIB Stack
 IPoIB address resolution
 User mode IPoIB QPn Addressing
 User Verbs and “IPoIB QP”
 Verbs API extensions
 IPoIB and RSS
 IPoIB and TSS
 IPoIB TSO
 IPoIB and overlay networking
 Summary

OpenFabrics Alliance Workshop 2017

EXTENDING THE USER LEVEL NETWORKING API

 Over the last year the RDMA stack has been extended to support packet processing
applications and user-level TCP/IP stacks

 This allowed delivering of low latency and high message-rate to these applications.
We’ll provide an extensive introduction to both current and upcoming packet
processing Verbs, such as checksum offloads, TSO, flow steering, and RSS

 2016 focus was on Ethernet
 In 2017 we want to expand to IPoIB

OpenFabrics Alliance Workshop 2017

FOLLOW UP ON 2016 OFA PRESENTATION:
USER MODE ETHERNET VERBS

 Presentation of features to enable higher rate user space Ethernet implementation for packet
processing
https://www.openfabrics.org/images/eventpresos/2016presentations/205EthernetVerbs.pdf

 Status:
• Done: Receive Side Scaling (RSS)

• ibv_create_rwq_ind_table()
• ibv_create_qp_ex(IBV_QP_INIT_ATTR_RX_HASH |

IBV_QP_INIT_ATTR_IND_TABLE)
• Done: Work Queue’s

• ibv_create_wq(IBV_WQT_RQ)
• Done: TSO

• ibv_create_qp_ex(IBV_QP_INIT_ATTR_MAX_TSO_HEADER)
• Done: Tunneling (Kernel part)

• IB_FLOW_SPEC_INNER & IB_FLOW_SPEC_VXLAN_TUNNEL
• Done: Capture (Sniffer) for RDMA and Eth

• IBV_FLOW_ATTR_SNIFFER
• Done: CQ iterator

• ibv_start_poll(), ibv_next_poll(), ibv_end_poll(), and many getter()’s

https://www.openfabrics.org/images/eventpresos/2016presentations/205EthernetVerbs.pdf

OpenFabrics Alliance Workshop 2017

USER MODE ETHERNET VERBS - NEXT

• Interrupt vector (CQ) binding to CPU core – In progress
• Interrupt Moderation (CQ Moderation) – In progress
• Extend Tunneling: to user space, VXLAN, NVGRE, GENEVE – In progress
• LRO support
• Support Non-Privileged Ethernet QP types

• Kernel to control send headers L2/L3/L4 (vs RAW_PACKET)
• Kernel to control receive filters a process can assign

OpenFabrics Alliance Workshop 2017

IPOIB VERBS – CURRENT STATUS

 IPoIB (datagram mode) is UD QP
 Today user space application can:

• Create a UD QP
ibv_create_qp_ex(IBV_QPT_UD)

• Join multicast as full member with the SM
rdma_join_multicast()

• Receive multicast by entire MGID steering
ibv_attach_mcast()

• Send multicast and unicast with respectful AH
ibv_post_send()

 But there are many limitations… (next slide)

 Motivation:
• Run user mode TCP/IP stack, DPDK or other socket

accelerations solutions over Infiniband/IPoIB

Application

IPoIB ULP
net_dev

TCP/IP Kernel
Stack

uVerbs

mlx_ib

User Mode
Stack / DPDK

Ib_core

Sockets

Stateless Offloads Engine

NIC

U

K

UD QP

UD QP

Send/Recv
IPoIB frames

Verbs objects:
QP, CQ, Mem

regs

Transmit
Flow

Tables

Receive
Flow

Tables

OpenFabrics Alliance Workshop 2017

IPOIB AND ARP

 IPoIB Specification
• Defined by IETF group in RFCs 4391, 4392
• Covers IPoIB HW addressing, IPoIB ARP and DHCP
 IPoIB RFC Defines the following L2 Hardware address format:

 IPoIB ARP packet format payload uses the above Hardware address format

 Following address resolution process (IPoIB ARP), network stack is familiar with
remote peer IPoIB QPN

Reserved
[7:0]

QP Number [23:0] GID = SubnetPrefix:GUID
[127:0] = [63:0][63:0]

HW Type (0x20) Protocol : IPv4
HW Addr Len Proto Addr Len ARP Operation

Sender HW Address
Sender Protocol Address

Receiver HW Address
Receiver Protocol Address

OpenFabrics Alliance Workshop 2017

CHALLENGES FOR IPOIB PACKET PROCESSING

 IPoIB QPN
• Receive steering is preformed by match of packet->dst_QPN to my_ibv_qp->qp_num

• Address resolution result is IPoIB QPN and not “My QPN”
• Sends will use my_ibv_qp->qp_num as src_QPN in DETH header over the wire
• In order to send/recv based on a different QPN (L2 IPoIB address) Verbs should support:

• Define wire (DETH) QPN
• Ibv_create_flow() to allow steering based on IPoIB netdev QPN (only as CAP_NET_RAW) to “My QPN”

• Learning the IPoIB QPN value:
• Part of the link layer hardware address definition: <GID, QPN>

• defined in IPoIB RFC: https://tools.ietf.org/html/rfc4391
• Exposed on net_dev as L2 of interface

 To support selective flows packet processing:
• Ibv_create_flow() to support L3 & L4 header attributes specs for IPoIB as well
 Enabling stateless offloads:

• Checksum
• TSO, LRO
• RSS, TSS
• Also for tunneled IPoIB (VXLANoIPoIB)
 Reuse existing APIs and Verbs objects (ibv_cq, ibv_qp, ibv_wq, ibv_rwq_ind_tbl, ibv_mr,

ibv_flow, …)

https://tools.ietf.org/html/rfc4391

OpenFabrics Alliance Workshop 2017

USER SPACE UD QP ASSOCIATION WITH IPOIB QP

 Extend UD QP to be ASSOCIATED with another QPN
• RX: Allow steer ingress traffic flows from another QPN to application UD QP’s RecvQ (e.g.: steer IPoIB QPN traffic)
• TX: Application post_send from “My UD QP” (SQ) to send with separately defined src QPN on the wire

• Send with well known IPoIB QPN as DETH.sQPN
• For TSS, all Send queues (SQ) will use same pre-defined QPN

 Transport properties are defined by the Associated QP owner (IPoIB):
• Port, Pkey, State

 my_ibv_qp->qp_num is a handle with local scope only
• Has no meaning on the wire

 Data Path is UD/IB:
• Tx requires <AH, remote_pkey, remote_qpn>
• Rx might hold GRH header following by IPoIB, IP, TCP/UDP…

• Requires flow steering to steer flows out of associated QP

OpenFabrics Alliance Workshop 2017

VERBS API EXTENSIONS

 Create the Associated UD QP (overlay)
• ibv_create_qp_ex(comp_mask |= IBV_QP_INIT_ATTR_ASSOCIATED_QPN)

and provide the QPN of the associated IPoIB UD QP
 Checks & Failures

• If QPN is not part of the callers ibv_context then check for CAP_NET_RAW or fail with
errno=EPERM

• If requested ibv_device provider does not support the ASSOCIATED mask then fail with
errno=ENOSYS

• If requested QPN is not found, or QPN is not in a healthy state (RTS), fail with
errno=EINVAL

 Multi-Queue
• RSS with: IBV_QP_INIT_ATTR_IND_TABLE | IBV_QP_INIT_ATTR_RX_HASH
• TSS with multiple ibv_wq of type IBV_SQ

 TSO
• With IBV_QP_INIT_ATTR_MAX_TSO_HEADER

 Modify
• Only state transitions are allowed (prepare the RQ and SQ)
• No transport definitions for ibv_modify_qp() for the overlay QP

 Device Cap
• IBV_DEVICE_MANAGED_FLOW_STEERING
• IBV_DEVICE_UD_IP_CSUM
• struct ibv_rss_caps rss_caps;
• struct ibv_tso_caps tso_caps;

enum ibv_qp_init_attr_mask {
IBV_QP_INIT_ATTR_PD = 1 << 0,
IBV_QP_INIT_ATTR_XRCD = 1 << 1,
IBV_QP_INIT_ATTR_CREATE_FLAGS = 1 << 2,
IBV_QP_INIT_ATTR_MAX_TSO_HEADER = 1 << 3,
IBV_QP_INIT_ATTR_IND_TABLE = 1 << 4,
IBV_QP_INIT_ATTR_RX_HASH = 1 << 5,
IBV_QP_INIT_ATTR_ASSOCIATED_QP = 1 << 6,
IBV_QP_INIT_ATTR_RESERVED = 1 << 67

};

struct ibv_qp_init_attr_ex {
...
uint32_t associated_qp_num;

};

OpenFabrics Alliance Workshop 2017

VERBS USE CASE – RECEIVE FLOW STEERING

 Use existing Ibv_create_flow()
 Ibv_flow_spec to support:

• IPoIB flow_spec_type
• Associated QPN

 Use existing ibv_flow_spec
types to steer UDP/TCP 3/5-
tuple flows

UD QP
flags=ASSOCIATED

IPoIB
Rx Flow
Steering

UD QP
IPoIB’s

CQ

uVerbs
Application

Thrd1

WC
IBV_WC_IP_CSUM_OK

U

K

OpenFabrics Alliance Workshop 2017

RSS - INTRODUCTION

 Receive Side Scaling (RSS) technology enables
spreading incoming traffic to multiple receive
queues
 Each receive queue is associated with a completion

queue
 Completion Queues (CQ) are bound to a CPU core

• CQ is associated with interrupt vector and thus with CPU
• For polling, user may run polling for each CQ from associated CPU

• In NUMA systems, CQ and RQ may be allocated on close memory to
associated CPU

 Spreading the receive queues to different CPU cores
allows spreading receive workload of incoming traffic

12

RSS Hash

Ingress Traffic

RQ#0

. . .
CQ#0

RQ#1

CQ#1

RQ#N

CQ#N

RQ

CQ

Ingress Traffic

OpenFabrics Alliance Workshop 2017

RSS - FLOW OVERVIEW

Classify first, distribute after

 Begin with classification
• Using Steering (ibv_create_flow()) classify incoming traffic
• Classification rules may be any of the packet L3/4 header attributes

• e.g. TCP/UDP only traffic, IPv4 only traffic, ..
• Classification result is transport object - QP

 Continue with spreading
• Transport object (QPs) are responsible for spreading to the receive queues
• QPs carry RSS spreading rules and receive queue indirection table

 RQs are associated with CQ
• CQs are associated with CPU core

 Different traffic types can be subject to different spreading

OpenFabrics Alliance Workshop 2017

RSS - WORK QUEUE (WQ)

 Typically QPs (Queued Pairs) are created with 3 elements
• Transmit and receive Transport
• Receive Queue

• Exception is QPs which are associated with SRQ
• Send Queue

 Verbs were extended to support separate allocation of the
above 3 elements
• Transport – ibv_qp with no RQ or SQ

• Ibv_qp_type of IBV_QPT_UD with ASSOCIATED QPN
• Ibv_init_qp_attr_ex->ibv_rx_hash_conf

• Work Queue
• Using ibv_qp_init_attr_ex-> ibv_rwq_ind_table
• Where ibv_rwq_ind_table includes list of ibv_wq with IBV_RQ type

QP

Transport

Send
WQ

Recv
WQ

QP

Transport

Recv
WQ

Send
WQ

Recv
WQ

Send
WQ

Recv
WQ

Send
WQ

IPoIB
QPN

IPoIB
QPN

OpenFabrics Alliance Workshop 2017

RSS - WORK QUEUE (WQ) CONT.

 Work Queues of type Receive Queue (IBV_RQ) may share receive pool
• By associating many Work Queues to same Shared Receive Queue (the existing verbs ibv_srq object)

 QP (ibv_qp) can be created without internal Send and Receive Queues and associated with
external Work Queue (ibv_wq)
 QP can be associated with multiple Work Queues of type Receive Queue

• Through Receive Queue Indirection Table object

struct ibv_wq {
struct ibv_context *context;
void *wq_context;
uint32_t handle;
struct ibv_pd *pd;
struct ibv_cq *cq;
/* SRQ handle if WQ is to be /

associated with an SRQ, /
otherwise NULL */

struct ibv_srq *srq;
uint32_t wq_num;
enum ibv_wq_state state;
enum ibv_wq_type wq_type;
uint32_t comp_mask;

};

 Use existing Work Queue object – ibv_wq
 Managed through following calls:

• ibv_wq *ibv_create_wq(ibv_wq_init_attr)
• ibv_modify_wq(ibv_wq , ibv_wq_attr)
• ibv_destory_wq(ibv_wq)
• ibv_post_wq_recv(ibv_wq, ibv_recv_wr)
 Work Queues (ibv_wq) are associated with

Completion Queue (ibv_cq)
• Multiple Work Queues may be mapped to same Completion

Queue (many to one)

OpenFabrics Alliance Workshop 2017

RSS - WQ OF TYPE RQ
STATE DIAGRAM

RDY ERR
CREATE_RQ

DESTRO
Y_RQ

MODIFY_RQ
(RDY2RDY)

MODIFY_RQ
(RDY2ERR)

SW
Transition

SW/HW
Transition

any state

RDY

RST

OpenFabrics Alliance Workshop 2017

RSS - RECEIVE WORK QUEUE INDIRECTION TABLE

 Use existing Receive Work Queue Indirection
Table object – ibv_rwq_ind_table
 Managed through following new calls:

• ibv_wq_ind_tbl
*ibv_create_rwq_ind_table(ibv_rwq_ind_table_init_attr)

• ibv_modify_rwq_ind_table(ibv_rwq_ind_table)*
• ibv_query_rwq_ind_table(ibv_rwq_ind_tbl,

ibv_rwq_ind_table_attr)*
• ibv_destroy_rwq_ind_table(ibv_rwq_ind_tbl)
 QPs may be associated with an RQ Indirection

Table
 Multiple QPs may be associated with same RQ

Indirection Table

* Not upstream yet

struct ibv_rwq_ind_table {
struct ibv_context *context;
uint32_t handle;
int ind_tbl_num;
uint32_t comp_mask;

};

/*
* Receive Work Queue Indirection Table

attributes
*/
struct ibv_rwq_ind_table_init_attr {

uint32_t log_rwq_ind_tbl_size;
struct ibv_wq **rwq_ind_tbl;
uint32_t comp_mask;

};

/*
* Receive Work Queue Indirection Table

attributes
*/
struct ibv_rwq_ind_table_attr {

uint32_t attr_mask;
uint32_t log_rwq_ind_tbl_size;
struct ibv_wq **rwq_ind_tbl;
uint32_t comp_mask;

};

OpenFabrics Alliance Workshop 2017

RSS - TRANSPORT OBJECT (QP)

 “RSS” QP
• ibv_qp_init_attr_ex->ibv_rx_hash_conf to define RSS hash params

• Hash key
• Packet headers

• ibv_qp_init_attr_ex->ibv_rwq_ind_table to define RQ list
• ibv_post_wq_recv to post receive WQE
 On Receive, traffic is steered to the QP according

Ibv_create_flow() spec and ASSOCIATED QPN
 Following, matching RQ is chosen according to QPs

hash calculation

struct ibv_rx_hash_conf {
/* enum ibv_rx_hash_fnction */
uint8_t rx_hash_function;
/* valid only for Toeplitz */
uint8_t *rx_hash_key;
/* enum ibv_rx_hash_fields */
uint64_t rx_hash_fields_mask;
struct ibv_rwq_ind_table *rwq_ind_tbl;

};
/*
RX Hash Function.
*/
enum ibv_rx_hash_function_flags {

IBV_RX_HASH_FUNC_TOEPLTIZ = 1 << 0,
IBV_RX_HASH_FUNC_XOR = 1 << 1

};
/*
Field represented by the flag will be
used in RSS Hash calculation.
*/
enum ibv_rx_hash_fields {

IBV_RX_HASH_SRC_IPV4 = 1 << 0,
IBV_RX_HASH_DST_IPV4 = 1 << 1,
IBV_RX_HASH_SRC_IPV6 = 1 << 2,
IBV_RX_HASH_DST_IPV6 = 1 << 3,
IBV_RX_HASH_SRC_PORT_TCP = 1 << 4,
IBV_RX_HASH_DST_PORT_TCP = 1 << 5,
IBV_RX_HASH_SRC_PORT_UDP = 1 << 6,
IBV_RX_HASH_DST_PORT_UDP = 1 << 7

};

UD QP
flags=ASSO

CIATED
+ RSS

rwq
indirec

tion
table

WQ: RQ CQ

WQ: RQ CQ

WQ: RQ CQ

WQ: RQ CQ

IPoIB
Rx Flow
Steering

Verbs
Application

Thrd
4Thrd

3Thrd
2Thrd

UD QP
IPoIB’s

U

K

OpenFabrics Alliance Workshop 2017

TSS

 Work Queue to support new IBV_SQ type
• Ibv_wq_init_attr->wq_type
 Multiple ibv_wq of type IBV_SQ can be associated with same IPoIB UD QP

• All SQs share same transport properties
• QPN – use single s.QPN on the wire for all SQs
• Pkey
• Qkey

 New ibv_post_wq_send() for posting send WQE on an SQ
 ibv_wq->cq of type IBV_SQ is associated with send CQ
 Same QP may be used for both RSS and TSS operations

UD QP
flags=ASSO

CIATED
+ TSS

WQ: SQ
CQ

Verbs
Application

Thrd
4Thrd

3Thrd
2Thrd

WQ: SQ
CQ

WQ: SQ
CQ

WQ: SQ
CQ

OpenFabrics Alliance Workshop 2017

U
DU

D

TSO – USAGE FLOW

 Check device capabilities with ibv_query_device_ex()
• ibv_is_qpt_supported (ibv_device_attr_ex->tso_cap.supported_qpts,

IBV_QPT_UD)
• ibv_device_attr_ex->tso_cap.max_tso

 Create UD QP with TSO through ibv_create_qp_ex() :
• ibv_qp_init_attr_ex->comp_mask =

IBV_QP_INIT_ATTR_MAX_TSO_HEADER
• ibv_qp_init_attr_ex->max_tso_header = 44; // IPoIB/IPv4/TCP headers

 Send the large TSO frame with ibv_post_send():
• Send opcode: ibv_send_wr->opcode = IBV_WR_TSO
• IPoIB TSO packet setting: ibv_send_wr->tso->hdr, hdr_sz, mss
• UD send addressing: ibv_send_wr->ud->ah, remote_qpn, remote_qkey

 Next – Allow SQ support for TSO
• ibv_post_wq_send() to support IBV_WR_TSO operation

UD QP
flags=ASSO

CIATED
+ TSO

Verbs
Application

send_wr

CQ

struct ibv_tso_caps {
uint32_t max_tso;
uint32_t supported_qpts;

};

struct ibv_send_wr {
uint64_t wr_id;
struct ibv_send_wr *next;
struct ibv_sge *sg_list;
int num_sge;
enum ibv_wr_opcode opcode;
int send_flags;
__be32 imm_data;
union {

struct {
struct ibv_ah *ah;
uint32_t remote_qpn;
uint32_t remote_qkey;

} ud;
} wr;
union {

struct {
void *hdr;
uint16_t hdr_sz;
uint16_t mss;

} tso;
};

};

IPoIB IP TCP

payload
> MSS

IPoIB IP TCP
payload
< MSS

IPoIB IP TCP
payload
< MSS

IPoIB IP TCP
payload
< MSS

U
D

OpenFabrics Alliance Workshop 2017

OVERLAY NETWORKING

 Tunneling technologies like VXLAN, NVGRE, GENEVE were introduced for solving cloud
scalability and security challenges
 Allow tunneling over IPoIB – outer L2 is the IPoIB 4 bytes header
 Require extensions of traditional NIC stateless offloads

• TX and RX inner headers checksum
• ibv_qp_attr to control inner csum offload
• Ibv_send_wr, ibv_wc to request and report inner csum

• Inner TCP Segmentation and De-segmentation (LSO/LRO)
• ibv_send_wr to support inner MSS settings

• Inner Ethernet header VLAN insertion and stripping
• Ibv_qp_attr to control inner VLAN insert/strip
• Ibv_send_wr to indicate VLAN
• Ibv_wc to report strip VLAN

• Steering to QP according to outer and inner headers attributes
• Ibv_create_flow(ibv_flow_attr) to support inner headers

• Perform RSS based on inner and/or outer header attributes
• Ibv_qp_attr.ibv_rx_hash_conf to support inner header attributes

• Inner packet parsing and reporting its properties in Completion Queue Entry (CQE)
• Ibv_wc to support inner headers extraction

OpenFabrics Alliance Workshop 2017

SUMMERY

 User Verbs generic object model to enable user space IPoIB Packet Processing
 Reuse existing Verbs infrastructure

• Ibv_qp, ibv_cq, ibv_flow, ibv_mr
• Ibv_wq, ibv_rwq_ind_table

 Control and data path infrastructure
• Use OS services for control path and allow bypass for data path
• Can answer performance requirements for both high PPS, BW and low latency

 Create association between application UD QP and underlying IPoIB net_dev QPN
• Allow app UD QP to receive selected flows of the ingress traffic
• Allow send from application UD QP with wire QPN of the net_dev UD QPN

 Support all packet processing stateless offloads
• CSUM, RSS, TSS, TSO, LSO
• Many are already available in verbs for Ethernet RAW PACKET QP – reuse, Yeh 

13th ANNUAL WORKSHOP 2017

THANK YOU
Tzahi Oved, Alex Rosenbaum

Mellanox Technologies

[LOGO HERE]

	User Space IPoIB Packet Processing
	Agenda
	Extending the User Level Networking API
	Follow Up on 2016 OFA presentation:�USER MODE ETHERNET VERBS
	USER MODE ETHERNET VERBS - Next
	IPoIB verbs – current status
	IPoIB and ARP
	challenges for IPoIB Packet Processing
	User Space UD QP Association With IPoIB QP
	Verbs API extensions
	Verbs Use Case – Receive Flow steering
	RSS - Introduction
	RSS - Flow Overview
	RSS - Work Queue (WQ)
	RSS - Work Queue (WQ) Cont.
	RSS - WQ of Type RQ�State Diagram
	RSS - Receive Work Queue Indirection Table
	RSS - Transport Object (QP)
	TSS
	TSO – Usage Flow
	Overlay networking
	Summery
	THANK YOU

