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AGENDA

 Motivation for extending IPoIB user space processing
 Progress of Eth user space processing
 Status update on Eth user space processing
 IPoIB Stack
 IPoIB address resolution
 User mode IPoIB QPn Addressing
 User Verbs and “IPoIB QP”
 Verbs API extensions
 IPoIB and RSS
 IPoIB and TSS
 IPoIB TSO
 IPoIB and overlay networking
 Summary
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EXTENDING THE USER LEVEL NETWORKING API

 Over the last year the RDMA stack has been extended to support packet processing 
applications and user-level TCP/IP stacks

 This allowed delivering of low latency and high message-rate to these applications.
We’ll provide an extensive introduction to both current and upcoming packet 
processing Verbs, such as checksum offloads, TSO, flow steering, and RSS

 2016 focus was on Ethernet
 In 2017 we want to expand to IPoIB
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FOLLOW UP ON 2016 OFA PRESENTATION:
USER MODE ETHERNET VERBS

 Presentation of features to enable higher rate user space Ethernet implementation for packet 
processing
https://www.openfabrics.org/images/eventpresos/2016presentations/205EthernetVerbs.pdf

 Status:
• Done: Receive Side Scaling (RSS)

• ibv_create_rwq_ind_table()
• ibv_create_qp_ex(IBV_QP_INIT_ATTR_RX_HASH | 

IBV_QP_INIT_ATTR_IND_TABLE)
• Done: Work Queue’s

• ibv_create_wq(IBV_WQT_RQ)
• Done: TSO

• ibv_create_qp_ex(IBV_QP_INIT_ATTR_MAX_TSO_HEADER)
• Done: Tunneling (Kernel part)

• IB_FLOW_SPEC_INNER & IB_FLOW_SPEC_VXLAN_TUNNEL
• Done: Capture (Sniffer) for RDMA and Eth

• IBV_FLOW_ATTR_SNIFFER
• Done: CQ iterator

• ibv_start_poll(), ibv_next_poll(), ibv_end_poll(), and many getter()’s

https://www.openfabrics.org/images/eventpresos/2016presentations/205EthernetVerbs.pdf
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USER MODE ETHERNET VERBS - NEXT

• Interrupt vector (CQ) binding to CPU core – In progress
• Interrupt Moderation (CQ Moderation) – In progress
• Extend Tunneling: to user space, VXLAN, NVGRE, GENEVE – In progress
• LRO support
• Support Non-Privileged Ethernet QP types

• Kernel to control send headers L2/L3/L4 (vs RAW_PACKET)
• Kernel to control receive filters a process can assign
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IPOIB VERBS – CURRENT STATUS

 IPoIB (datagram mode) is UD QP
 Today user space application can:

• Create a UD QP
ibv_create_qp_ex(IBV_QPT_UD)

• Join multicast as full member with the SM 
rdma_join_multicast()

• Receive multicast by entire MGID steering 
ibv_attach_mcast()

• Send multicast and unicast with respectful AH 
ibv_post_send()

 But there are many limitations… (next slide)

 Motivation: 
• Run user mode TCP/IP stack, DPDK or other socket 

accelerations solutions over Infiniband/IPoIB
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IPOIB AND ARP

 IPoIB Specification
• Defined by IETF group in RFCs 4391, 4392
• Covers IPoIB HW addressing, IPoIB ARP and DHCP
 IPoIB RFC Defines the following L2 Hardware address format:

 IPoIB ARP packet format payload uses the above Hardware address format 

 Following address resolution process (IPoIB ARP), network stack is familiar with 
remote peer IPoIB QPN

Reserved
[7:0]

QP Number [23:0] GID  = SubnetPrefix:GUID
[127:0] = [63:0][63:0]

HW Type (0x20) Protocol : IPv4
HW Addr Len Proto Addr Len ARP Operation

Sender HW Address
Sender Protocol Address

Receiver HW Address
Receiver Protocol Address
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CHALLENGES FOR IPOIB PACKET PROCESSING

 IPoIB QPN
• Receive steering is preformed by match of packet->dst_QPN to my_ibv_qp->qp_num

• Address resolution result is IPoIB QPN and not “My QPN”
• Sends will use my_ibv_qp->qp_num as src_QPN in DETH header over the wire
• In order to send/recv based on a different QPN (L2 IPoIB address) Verbs should support:

• Define wire (DETH) QPN
• Ibv_create_flow() to allow steering based on IPoIB netdev QPN (only as CAP_NET_RAW) to “My QPN”

• Learning the IPoIB QPN value:
• Part of the link layer hardware address definition: <GID, QPN>

• defined in IPoIB RFC: https://tools.ietf.org/html/rfc4391
• Exposed on net_dev as L2 of interface

 To support selective flows packet processing:
• Ibv_create_flow() to support L3 & L4 header attributes specs for IPoIB as well
 Enabling stateless offloads:

• Checksum
• TSO, LRO
• RSS, TSS
• Also for tunneled IPoIB (VXLANoIPoIB)
 Reuse existing APIs and Verbs objects (ibv_cq, ibv_qp, ibv_wq, ibv_rwq_ind_tbl, ibv_mr, 

ibv_flow, …)

https://tools.ietf.org/html/rfc4391
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USER SPACE UD QP ASSOCIATION WITH IPOIB QP

 Extend UD QP to be ASSOCIATED with another QPN
• RX: Allow steer ingress traffic flows from another QPN to application UD QP’s RecvQ (e.g.: steer IPoIB QPN traffic)
• TX: Application post_send from “My UD QP” (SQ) to send with separately defined src QPN on the wire 

• Send with well known IPoIB QPN as DETH.sQPN
• For TSS, all Send queues (SQ) will use same pre-defined QPN

 Transport properties are defined by the Associated QP owner (IPoIB):
• Port, Pkey, State

 my_ibv_qp->qp_num is a handle with local scope only
• Has no meaning on the wire

 Data Path is UD/IB:
• Tx requires <AH, remote_pkey, remote_qpn>
• Rx might hold GRH header following by IPoIB, IP, TCP/UDP…

• Requires flow steering to steer flows out of associated QP
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VERBS API EXTENSIONS

 Create the Associated UD QP (overlay)
• ibv_create_qp_ex( comp_mask |= IBV_QP_INIT_ATTR_ASSOCIATED_QPN)

and provide the QPN of the associated IPoIB UD QP
 Checks & Failures

• If QPN is not part of the callers ibv_context then check for CAP_NET_RAW or fail with 
errno=EPERM

• If requested ibv_device provider does not support the ASSOCIATED mask then fail with 
errno=ENOSYS

• If requested QPN is not found, or QPN is not in a healthy state (RTS), fail with 
errno=EINVAL

 Multi-Queue
• RSS with: IBV_QP_INIT_ATTR_IND_TABLE | IBV_QP_INIT_ATTR_RX_HASH
• TSS with multiple ibv_wq of type IBV_SQ

 TSO 
• With IBV_QP_INIT_ATTR_MAX_TSO_HEADER

 Modify
• Only state transitions are allowed (prepare the RQ and SQ)
• No transport definitions for ibv_modify_qp() for the overlay QP

 Device Cap 
• IBV_DEVICE_MANAGED_FLOW_STEERING
• IBV_DEVICE_UD_IP_CSUM
• struct ibv_rss_caps rss_caps;
• struct ibv_tso_caps tso_caps;

enum ibv_qp_init_attr_mask {
IBV_QP_INIT_ATTR_PD             = 1 << 0,
IBV_QP_INIT_ATTR_XRCD           = 1 << 1,
IBV_QP_INIT_ATTR_CREATE_FLAGS   = 1 << 2,
IBV_QP_INIT_ATTR_MAX_TSO_HEADER = 1 << 3,
IBV_QP_INIT_ATTR_IND_TABLE      = 1 << 4,
IBV_QP_INIT_ATTR_RX_HASH        = 1 << 5,
IBV_QP_INIT_ATTR_ASSOCIATED_QP  = 1 << 6,
IBV_QP_INIT_ATTR_RESERVED       = 1 << 67

};

struct ibv_qp_init_attr_ex {
...
uint32_t        associated_qp_num;

};
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VERBS USE CASE – RECEIVE FLOW STEERING

 Use existing Ibv_create_flow()
 Ibv_flow_spec to support:

• IPoIB flow_spec_type
• Associated QPN

 Use existing ibv_flow_spec
types to steer UDP/TCP 3/5-
tuple flows

UD QP
flags=ASSOCIATED

IPoIB
Rx Flow 
Steering

UD QP
IPoIB’s

CQ

uVerbs
Application

Thrd1

WC
IBV_WC_IP_CSUM_OK

U

K
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RSS - INTRODUCTION

 Receive Side Scaling (RSS) technology enables 
spreading  incoming traffic to multiple receive 
queues
 Each receive queue is associated with a completion 

queue
 Completion Queues (CQ) are bound to a CPU core

• CQ is associated with interrupt vector and thus with CPU
• For polling, user may run polling for each CQ from associated CPU

• In NUMA systems, CQ and RQ may be allocated on close memory to 
associated CPU

 Spreading the receive queues to different CPU cores 
allows spreading receive workload of incoming traffic 

12

RSS Hash

Ingress Traffic

RQ#0

. . .
CQ#0

RQ#1

CQ#1

RQ#N

CQ#N

RQ

CQ

Ingress Traffic
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RSS - FLOW OVERVIEW

Classify first, distribute after

 Begin with classification
• Using Steering (ibv_create_flow()) classify incoming traffic 
• Classification rules may be any of the packet L3/4 header attributes

• e.g. TCP/UDP only traffic, IPv4 only traffic, ..
• Classification result is transport object - QP

 Continue with spreading
• Transport object (QPs) are responsible for spreading to the receive queues
• QPs carry RSS spreading rules and receive queue indirection table

 RQs are associated with CQ
• CQs are associated with CPU core

 Different traffic types can be subject to different spreading
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RSS - WORK QUEUE (WQ)

 Typically QPs (Queued Pairs) are created with 3 elements
• Transmit and receive Transport
• Receive Queue

• Exception is QPs which are associated with SRQ
• Send Queue

 Verbs were extended to support separate allocation of the 
above 3 elements
• Transport – ibv_qp with no RQ or SQ

• Ibv_qp_type of IBV_QPT_UD with ASSOCIATED QPN
• Ibv_init_qp_attr_ex->ibv_rx_hash_conf

• Work Queue
• Using ibv_qp_init_attr_ex-> ibv_rwq_ind_table
• Where ibv_rwq_ind_table includes list of ibv_wq with IBV_RQ type

QP

Transport

Send 
WQ

Recv
WQ

QP

Transport

Recv
WQ

Send 
WQ

Recv
WQ

Send 
WQ

Recv
WQ

Send 
WQ

IPoIB
QPN

IPoIB
QPN
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RSS - WORK QUEUE (WQ) CONT.

 Work Queues of type Receive Queue (IBV_RQ) may share receive pool
• By associating many Work Queues to same Shared Receive Queue (the existing verbs ibv_srq object)

 QP (ibv_qp) can be created without internal Send and Receive Queues and associated with 
external Work Queue (ibv_wq)
 QP can be associated with multiple Work Queues of type Receive Queue

• Through Receive Queue Indirection Table object

struct ibv_wq {
struct ibv_context *context;
void *wq_context; 
uint32_t handle;
struct ibv_pd *pd;
struct ibv_cq *cq;
/* SRQ handle if WQ is to be /

associated with an SRQ, /
otherwise NULL */

struct ibv_srq *srq;
uint32_t wq_num;
enum ibv_wq_state state;
enum ibv_wq_type wq_type;
uint32_t comp_mask;

};

 Use existing Work Queue object – ibv_wq
 Managed through following calls:

• ibv_wq *ibv_create_wq(ibv_wq_init_attr) 
• ibv_modify_wq(ibv_wq , ibv_wq_attr) 
• ibv_destory_wq(ibv_wq) 
• ibv_post_wq_recv(ibv_wq, ibv_recv_wr)
 Work Queues (ibv_wq) are associated with 

Completion Queue (ibv_cq)
• Multiple Work Queues may be mapped to same Completion 

Queue (many to one) 
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RSS - WQ OF TYPE RQ
STATE DIAGRAM

RDY ERR
CREATE_RQ

DESTRO
Y_RQ

MODIFY_RQ 
(RDY2RDY)

MODIFY_RQ 
(RDY2ERR)

SW
Transition

SW/HW
Transition

any state

RDY

RST
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RSS - RECEIVE WORK QUEUE INDIRECTION TABLE

 Use existing Receive Work Queue Indirection 
Table object – ibv_rwq_ind_table
 Managed through following new calls: 

• ibv_wq_ind_tbl
*ibv_create_rwq_ind_table(ibv_rwq_ind_table_init_attr)

• ibv_modify_rwq_ind_table(ibv_rwq_ind_table)*
• ibv_query_rwq_ind_table(ibv_rwq_ind_tbl, 

ibv_rwq_ind_table_attr)*
• ibv_destroy_rwq_ind_table(ibv_rwq_ind_tbl)
 QPs may be associated with an RQ Indirection 

Table
 Multiple QPs may be associated with same RQ 

Indirection Table

* Not upstream yet

struct ibv_rwq_ind_table {
struct ibv_context *context;
uint32_t handle;
int ind_tbl_num;
uint32_t comp_mask;

};

/*
* Receive Work Queue Indirection Table 

attributes
*/
struct ibv_rwq_ind_table_init_attr {

uint32_t log_rwq_ind_tbl_size;
struct ibv_wq **rwq_ind_tbl;
uint32_t comp_mask;

};

/*
* Receive Work Queue Indirection Table 

attributes
*/
struct ibv_rwq_ind_table_attr {

uint32_t attr_mask;
uint32_t log_rwq_ind_tbl_size;
struct ibv_wq **rwq_ind_tbl;
uint32_t comp_mask;

};
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RSS - TRANSPORT OBJECT (QP)

 “RSS” QP
• ibv_qp_init_attr_ex->ibv_rx_hash_conf to define RSS hash params

• Hash key
• Packet headers

• ibv_qp_init_attr_ex->ibv_rwq_ind_table to define RQ list
• ibv_post_wq_recv to post receive WQE
 On Receive, traffic is steered to the QP according 

Ibv_create_flow() spec and ASSOCIATED QPN
 Following, matching RQ is chosen according to QPs 

hash calculation

struct ibv_rx_hash_conf {
/* enum ibv_rx_hash_fnction */
uint8_t rx_hash_function;
/* valid only for Toeplitz */
uint8_t   *rx_hash_key;
/* enum ibv_rx_hash_fields */
uint64_t rx_hash_fields_mask;
struct ibv_rwq_ind_table *rwq_ind_tbl;

};
/*
RX Hash Function.
*/
enum ibv_rx_hash_function_flags {

IBV_RX_HASH_FUNC_TOEPLTIZ = 1 << 0,
IBV_RX_HASH_FUNC_XOR = 1 << 1

};
/*
Field represented by the flag will be
used in RSS Hash calculation.
*/
enum ibv_rx_hash_fields {

IBV_RX_HASH_SRC_IPV4 = 1 << 0,
IBV_RX_HASH_DST_IPV4 = 1 << 1,
IBV_RX_HASH_SRC_IPV6 = 1 << 2,
IBV_RX_HASH_DST_IPV6 = 1 << 3,
IBV_RX_HASH_SRC_PORT_TCP = 1 << 4,
IBV_RX_HASH_DST_PORT_TCP = 1 << 5,
IBV_RX_HASH_SRC_PORT_UDP = 1 << 6,
IBV_RX_HASH_DST_PORT_UDP = 1 << 7

};

UD QP
flags=ASSO

CIATED
+ RSS

rwq
indirec

tion
table

WQ: RQ CQ

WQ: RQ CQ

WQ: RQ CQ

WQ: RQ CQ

IPoIB
Rx Flow 
Steering

Verbs 
Application

Thrd
4Thrd

3Thrd
2Thrd

UD QP
IPoIB’s
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TSS

 Work Queue to support new IBV_SQ type
• Ibv_wq_init_attr->wq_type
 Multiple ibv_wq of type IBV_SQ can be associated with same IPoIB UD QP

• All SQs share same transport properties
• QPN – use single s.QPN on the wire for all SQs
• Pkey
• Qkey

 New ibv_post_wq_send() for posting send WQE on an SQ
 ibv_wq->cq of type IBV_SQ is associated with send CQ
 Same QP may be used for both RSS and TSS operations

UD QP
flags=ASSO

CIATED
+ TSS

WQ: SQ
CQ

Verbs 
Application

Thrd
4Thrd

3Thrd
2Thrd

WQ: SQ
CQ

WQ: SQ
CQ

WQ: SQ
CQ
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TSO – USAGE FLOW

 Check device capabilities with ibv_query_device_ex()
• ibv_is_qpt_supported (ibv_device_attr_ex->tso_cap.supported_qpts, 

IBV_QPT_UD)
• ibv_device_attr_ex->tso_cap.max_tso

 Create UD QP with TSO through ibv_create_qp_ex() :
• ibv_qp_init_attr_ex->comp_mask = 

IBV_QP_INIT_ATTR_MAX_TSO_HEADER
• ibv_qp_init_attr_ex->max_tso_header = 44; // IPoIB/IPv4/TCP headers

 Send the large TSO frame with ibv_post_send():
• Send opcode: ibv_send_wr->opcode = IBV_WR_TSO 
• IPoIB TSO packet setting: ibv_send_wr->tso->hdr, hdr_sz, mss
• UD send addressing: ibv_send_wr->ud->ah, remote_qpn, remote_qkey

 Next – Allow SQ support for TSO
• ibv_post_wq_send() to support IBV_WR_TSO operation

UD QP
flags=ASSO

CIATED
+ TSO

Verbs 
Application

send_wr

CQ

struct ibv_tso_caps {
uint32_t max_tso;
uint32_t supported_qpts;

};

struct ibv_send_wr {
uint64_t                wr_id;
struct ibv_send_wr *next;
struct ibv_sge *sg_list;
int num_sge;
enum ibv_wr_opcode opcode;
int send_flags;
__be32                  imm_data;
union {

struct {
struct ibv_ah *ah;
uint32_t        remote_qpn;
uint32_t        remote_qkey;

} ud;
} wr;
union {

struct {
void                   *hdr;
uint16_t                hdr_sz;
uint16_t                mss;

} tso;
};

};

IPoIB IP  TCP

payload
> MSS

IPoIB IP  TCP
payload
< MSS

IPoIB IP  TCP
payload
< MSS

IPoIB IP  TCP
payload
< MSS

U
D
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OVERLAY NETWORKING

 Tunneling technologies like VXLAN, NVGRE, GENEVE were introduced for solving cloud 
scalability and security challenges 
 Allow tunneling over IPoIB – outer L2 is the IPoIB 4 bytes header
 Require extensions of traditional NIC stateless offloads

• TX and RX inner headers checksum
• ibv_qp_attr to control inner csum offload
• Ibv_send_wr, ibv_wc to request and report inner csum

• Inner TCP Segmentation and De-segmentation (LSO/LRO)
• ibv_send_wr to support inner MSS settings

• Inner Ethernet header VLAN insertion and stripping
• Ibv_qp_attr to control inner VLAN insert/strip
• Ibv_send_wr to indicate VLAN
• Ibv_wc to report strip VLAN

• Steering to QP according to outer and inner headers attributes
• Ibv_create_flow(ibv_flow_attr) to support inner headers

• Perform RSS based on inner and/or outer header attributes
• Ibv_qp_attr.ibv_rx_hash_conf to support inner header attributes

• Inner packet parsing and reporting its properties in Completion Queue Entry (CQE)
• Ibv_wc to support inner headers extraction
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SUMMERY

 User Verbs generic object model to enable user space IPoIB Packet Processing
 Reuse existing Verbs infrastructure

• Ibv_qp, ibv_cq, ibv_flow, ibv_mr
• Ibv_wq, ibv_rwq_ind_table

 Control and data path infrastructure
• Use OS services for control path and allow bypass for data path
• Can answer performance requirements for both high PPS, BW and low latency 

 Create association between application UD QP and underlying IPoIB net_dev QPN
• Allow app UD QP to receive selected flows of the ingress traffic
• Allow send from application UD QP with wire QPN of the net_dev UD QPN

 Support all packet processing stateless offloads 
• CSUM, RSS, TSS, TSO, LSO
• Many are already available in verbs for Ethernet RAW PACKET QP – reuse, Yeh 
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THANK YOU
Tzahi Oved, Alex Rosenbaum

Mellanox Technologies

[  LOGO HERE  ]


	User Space IPoIB Packet Processing
	Agenda
	Extending the User Level Networking API
	Follow Up on 2016 OFA presentation:�USER MODE ETHERNET VERBS
	USER MODE ETHERNET VERBS - Next
	IPoIB verbs – current status
	IPoIB and ARP
	challenges for IPoIB Packet Processing
	User Space UD QP Association With IPoIB QP
	Verbs API extensions
	Verbs Use Case – Receive Flow steering
	RSS - Introduction
	RSS - Flow Overview
	RSS - Work Queue (WQ)
	RSS - Work Queue (WQ) Cont.
	RSS - WQ of Type RQ�State Diagram
	RSS - Receive Work Queue Indirection Table
	RSS - Transport Object (QP)
	TSS
	TSO – Usage Flow
	Overlay networking
	Summery
	THANK YOU

