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• Cloud Computing focuses on maximizing the effectiveness of the shared resources

• Virtualization is the key technology for resource sharing in the Cloud

• Widely adopted in industry computing environment 

• IDC Forecasts Worldwide Public IT Cloud Services Spending to Reach Nearly $108 Billion 
by 2017 (Courtesy: http://www.idc.com/getdoc.jsp?containerId=prUS24298013)

Cloud Computing and Virtualization 

VirtualizationCloud Computing
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Drivers of Modern HPC Cluster and Cloud Architecture

• Multi-core/many-core technologies, Accelerators

• Large memory nodes

• Solid State Drives (SSDs), NVM, Parallel Filesystems, Object Storage Clusters

• Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)

• Single Root I/O Virtualization (SR-IOV)

High Performance Interconnects –
InfiniBand (with SR-IOV)

<1usec latency, 200Gbps Bandwidth>
Multi-/Many-core 

Processors

SSDs, Object Storage 
Clusters

Large memory nodes
(Upto 2 TB)

Cloud CloudSDSC Comet TACC Stampede
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• Single Root I/O Virtualization (SR-IOV) is providing new opportunities to design 
HPC cloud with very little low overhead

Single Root I/O Virtualization (SR-IOV)

• Allows a single physical device, or a 
Physical Function (PF), to present itself as 
multiple virtual devices, or Virtual 
Functions (VFs)

• VFs are designed based on the existing 
non-virtualized PFs, no need for driver 
change

• Each VF can be dedicated to a single VM 
through PCI pass-through

• Work with 10/40 GigE and InfiniBand
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• High-Performance Computing (HPC) has adopted advanced interconnects and protocols 

– InfiniBand

– 10/40/100 Gigabit Ethernet/iWARP

– RDMA over Converged Enhanced Ethernet (RoCE)

• Very Good Performance

– Low latency (few micro seconds)

– High Bandwidth (100 Gb/s with EDR InfiniBand)

– Low CPU overhead (5-10%)

• OpenFabrics software stack with IB, iWARP and RoCE interfaces are driving HPC systems

• How to Build HPC Clouds with SR-IOV and InfiniBand for delivering optimal performance?

Building HPC Cloud with SR-IOV and InfiniBand
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• Virtualization Support with Virtual Machines and Containers
– KVM, Docker, Singularity, etc.

• Communication coordination among optimized communication channels on Clouds
– SR-IOV, IVShmem, IPC-Shm, CMA, etc.

• Locality-aware communication
• Scalability for million to billion processors

– Support for highly-efficient inter-node and intra-node communication (both two-sided and one-sided)

• Scalable Collective communication
– Offload; Non-blocking; Topology-aware

• Balancing intra-node and inter-node communication for next generation nodes (128-1024 cores)
– Multiple end-points per node

• NUMA-aware communication for nested virtualization
• Integrated Support for GPGPUs and Accelerators
• Fault-tolerance/resiliency

– Migration support with virtual machines
• QoS support for communication and I/O
• Support for Hybrid MPI+PGAS programming (MPI + OpenMP, MPI + UPC, MPI + OpenSHMEM, MPI+UPC++, CAF, …)
• Energy-Awareness
• Co-design with resource management and scheduling systems on Clouds

– OpenStack, Slurm, etc.

Broad Challenges in Designing  Communication and I/O Middleware 
for HPC on Clouds
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• High-Performance designs for Big Data middleware
– RDMA-based designs to accelerate Big Data middleware on high-performance Interconnects
– NVM-aware communication and I/O schemes for Big Data
– SATA-/PCIe-/NVMe-SSD support
– Parallel Filesystem support
– Optimized overlapping among Computation, Communication, and I/O
– Threaded Models and Synchronization

• Fault-tolerance/resiliency
– Migration support with virtual machines
– Data replication

• Efficient data access and placement policies
• Efficient task scheduling
• Fast deployment and automatic configurations on Clouds

Additional Challenges in Designing  Communication and I/O 
Middleware for Big Data on Clouds
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• MVAPICH2-Virt with SR-IOV and IVSHMEM
– Standalone, OpenStack

• SR-IOV-enabled VM Migration Support in MVAPICH2

• MVAPICH2 with Containers (Docker and Singularity)

• MVAPICH2 with Nested Virtualization (Container over VM)

• MVAPICH2-Virt on SLURM
– SLURM alone, SLURM + OpenStack

• Big Data Libraries on Cloud
– RDMA-Hadoop, OpenStack Swift

Approaches to Build HPC Clouds
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MVAPICH2 Software Family 
High-Performance Parallel Programming Libraries

MVAPICH2 Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE

MVAPICH2-X Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and 
MPI+PGAS programming models with unified communication runtime

MVAPICH2-GDR Optimized MPI for clusters with NVIDIA GPUs

MVAPICH2-Virt High-performance and scalable MPI for hypervisor and container based HPC cloud

MVAPICH2-EA Energy aware and High-performance MPI

MVAPICH2-MIC Optimized MPI for clusters with Intel KNC

Microbenchmarks

OMB Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++) 
libraries for CPUs and GPUs

Tools

OSU INAM Network monitoring, profiling, and analysis for clusters with MPI and scheduler 
integration

OEMT Utility to measure the energy consumption of MPI applications
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HPC on Cloud Computing Systems: Challenges Addressed by OSU 
So Far 

HPC and Big Data Middleware

Networking Technologies
(InfiniBand, Omni-Path, 1/10/40/100 

GigE and Intelligent NICs)

Storage Technologies
(HDD, SSD, NVRAM, and NVMe-SSD)

HPC (MPI, PGAS, MPI+PGAS, MPI+OpenMP, etc.)

Applications

Commodity Computing System 
Architectures

(Multi- and Many-core architectures 
and accelerators)

Communication and I/O Library

Future Studies

Resource Management and Scheduling Systems for Cloud Computing
(OpenStack Nova, Heat; Slurm)

Virtualization 
(Hypervisor and Container)

Locality- and NUMA-aware
Communication

Communication Channels
(SR-IOV, IVShmem, IPC-Shm, CMA)

Fault-Tolerance & Consolidation
(Migration)

QoS-aware
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• Redesign MVAPICH2 to make it 
virtual machine aware

– SR-IOV shows near to native 
performance for inter-node point to 
point communication

– IVSHMEM offers shared memory based 
data access across co-resident VMs

– Locality Detector: maintains the locality 
information of co-resident virtual machines

– Communication Coordinator: selects the 
communication channel (SR-IOV, IVSHMEM) 
adaptively

Overview of MVAPICH2-Virt with SR-IOV and IVSHMEM

J. Zhang, X. Lu, J. Jose, R. Shi, D. K. Panda. Can Inter-VM 
Shmem Benefit MPI Applications on SR-IOV based 
Virtualized InfiniBand Clusters? Euro-Par, 2014

J. Zhang, X. Lu, J. Jose, R. Shi, M. Li, D. K. Panda. High 
Performance MPI Library over SR-IOV Enabled 
InfiniBand Clusters. HiPC, 2014
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• OpenStack is one of the most popular 
open-source solutions to build clouds and 
manage virtual machines

• Deployment with OpenStack
– Supporting SR-IOV configuration

– Supporting IVSHMEM configuration

– Virtual Machine aware design of MVAPICH2 
with SR-IOV

• An efficient approach to build HPC Clouds 
with MVAPICH2-Virt and OpenStack

MVAPICH2-Virt with SR-IOV and IVSHMEM over OpenStack

J. Zhang, X. Lu, M. Arnold, D. K. Panda. MVAPICH2 over OpenStack with SR-IOV: An Efficient Approach to 
Build HPC Clouds. CCGrid, 2015
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• 32 VMs, 6 Core/VM 

• Compared to Native, 2-5% overhead for Graph500 with 128 Procs

• Compared to Native, 1-9.5% overhead for SPEC MPI2007 with 128 Procs

Application-Level Performance on Chameleon

SPEC MPI2007Graph500

5%
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• MVAPICH2-Virt with SR-IOV and IVSHMEM
– Standalone, OpenStack

• SR-IOV-enabled VM Migration Support in MVAPICH2

• MVAPICH2 with Containers (Docker and Singularity)

• MVAPICH2 with Nested Virtualization (Container over VM)

• MVAPICH2-Virt on SLURM
– SLURM alone, SLURM + OpenStack

• Big Data Libraries on Cloud
– RDMA-Hadoop, OpenStack Swift

Approaches to Build HPC Clouds
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Execute Live Migration with SR-IOV Device



OFAW 2017 16Network Based Computing Laboratory

High Performance SR-IOV enabled VM Migration Support in 
MVAPICH2

J. Zhang, X. Lu, D. K. Panda. High-Performance Virtual Machine Migration Framework for MPI Applications on SR-IOV 
enabled InfiniBand Clusters. IPDPS, 2017

• Migration with SR-IOV device has to handle the 
challenges of detachment/re-attachment of 
virtualized IB device and IB connection

• Consist of SR-IOV enabled IB Cluster and External 
Migration Controller

• Multiple parallel libraries to notify MPI 
applications during migration (detach/reattach 
SR-IOV/IVShmem, migrate VMs, migration status)

• Handle the IB connection suspending and 
reactivating

• Propose Progress engine (PE) and migration 
thread based (MT) design to optimize VM 
migration and MPI application performance 
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• Compared with the TCP, the RDMA scheme reduces the total migration time by 20%

• Total time is dominated by `Migration’ time; Times on other steps are similar across different schemes 

• Proposed migration framework could reduce up to 51% migration time 

Performance Evaluation of VM Migration Framework
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Bcast (4VMs * 2Procs/VM)

• Migrate a VM from one machine to another while benchmark is running inside

• Proposed MT-based designs perform slightly worse than PE-based designs because of  lock/unlock

• No benefit from MT because of NO computation involved 

Performance Evaluation of VM Migration Framework
Pt2Pt Latency
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Graph500

• 8 VMs in total and 1 VM carries out migration during application running 

• Compared with NM, MT- worst and PE incur some overhead compared with NM

• MT-typical allows migration to be completely overlapped with computation 

Performance Evaluation of VM Migration Framework
NAS
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• MVAPICH2-Virt with SR-IOV and IVSHMEM
– Standalone, OpenStack

• SR-IOV-enabled VM Migration Support in MVAPICH2

• MVAPICH2 with Containers (Docker and Singularity)

• MVAPICH2 with Nested Virtualization (Container over VM)

• MVAPICH2-Virt on SLURM
– SLURM alone, SLURM + OpenStack

• Big Data Libraries on Cloud
– RDMA-Hadoop, OpenStack Swift

Approaches to Build HPC Clouds
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• Container-based technologies (e.g., Docker) provide lightweight virtualization solutions

• Container-based virtualization – share host kernel by containers

Overview of Containers-based Virtualization

VM1

Container1
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Benefits of Containers-based Virtualization for HPC on Cloud
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J. Zhang, X. Lu, D. K. Panda. Performance Characterization of Hypervisor- and Container-Based Virtualization 
for HPC on SR-IOV Enabled InfiniBand Clusters. IPDRM, IPDPS Workshop, 2016
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• What are the performance bottlenecks when 
running MPI applications on multiple 
containers per host in HPC cloud? 

• Can we propose a new design to overcome the 
bottleneck on such container-based HPC 
cloud? 

• Can optimized design deliver near-native 
performance for different container 
deployment scenarios? 

• Locality-aware based design to enable CMA
and Shared memory channels for MPI 
communication across co-resident containers

Containers-based Design: Issues, Challenges, and Approaches 

J. Zhang, X. Lu, D. K. Panda. High Performance MPI Library for Container-based HPC Cloud on InfiniBand Clusters. 
ICPP, 2016
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• 64 Containers across 16 nodes, pining 4 Cores per Container 

• Compared to Container-Def, up to 11% and 73% of execution time reduction for NAS and Graph 500

• Compared to Native, less than 9 % and 5% overhead for NAS and Graph 500

Application-Level Performance on Docker with MVAPICH2
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• Less than 18% overhead on latency

• Less than 13% overhead on BW

MVAPICH2 Intra-Node and Inter-Node Point-to-Point 
Performance on Singularity 
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• 512 Processes across 32 nodes

• Less than 15% and 14% overhead for Bcast and Allreduce, respectively

MVAPICH2 Collective Performance on Singularity 
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• 512 Processes across 32 nodes

• Less than 16% and 11% overhead for NPB and Graph500, respectively

Application-Level Performance on Singularity with MVAPICH2
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• MVAPICH2-Virt with SR-IOV and IVSHMEM
– Standalone, OpenStack

• SR-IOV-enabled VM Migration Support in MVAPICH2

• MVAPICH2 with Containers (Docker and Singularity)

• MVAPICH2 with Nested Virtualization (Container over VM)

• MVAPICH2-Virt on SLURM
– SLURM alone, SLURM + OpenStack

• Big Data Libraries on Cloud
– RDMA-Hadoop, OpenStack Swift

Approaches to Build HPC Clouds
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Nested Virtualization: Containers over Virtual Machines

• Useful for live migration, sandbox application, legacy system 
integration, software deployment, etc.

• Performance issues because of the redundant call stacks (two-layer 
virtualization) and isolated physical resources 
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Multiple Communication Paths in Nested Virtualization

1. Intra-VM Intra-Container (across core 4 and core 5)

2. Intra-VM Inter-Container (across core 13 and core 14)

3. Inter-VM Inter-Container (across core 6 and core 12)

4. Inter-Node Inter-Container (across core 15 and the core on remote node)

• Different VM placements introduce multiple communication paths 
on container level
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Performance Characteristics on Communication Paths

• Two VMs are deployed on the same socket and different sockets, respectively

• *-Def and Inter-VM Inter-Container-1Layer have similar performance

• Large gap compared to native performance
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Challenges of Nested Virtualization

• How to further reduce the performance overhead of running applications on 
the nested virtualization environment? 

• What are the impacts of the different VM/container placement schemes for 
the communication on the container level? 

• Can we propose a design which can adapt these different VM/container 
placement schemes and deliver near-native performance for nested 
virtualization environments?
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Overview of Proposed Design in MVAPICH2

Two-Layer Locality Detector: Dynamically 
detecting MPI processes in the co-
resident containers inside one VM as well 
as the ones in the co-resident VMs

Two-Layer NUMA Aware 
Communication Coordinator:
Leverage nested locality info, NUMA 
architecture info and message to 
select appropriate communication 
channel

J. Zhang, X. Lu, D. K. Panda. Designing Locality and NUMA Aware MPI Runtime for Nested Virtualization 
based HPC Cloud with SR-IOV Enabled InfiniBand, VEE, 2017
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Inter-VM Inter-Container Pt2Pt (Intra-Socket)

• 1Layer has similar performance to the Default
• Compared with 1Layer, 2Layer delivers up to 84% and 184% improvement for 

latency and BW

Latency BW
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Inter-VM Inter-Container Pt2Pt (Inter-Socket)

Latency BW
• 1-Layer has similar performance to the Default
• 2-Layer has near-native performance for small msg, but clear overhead on large msg
• Compared to 2-Layer, Hybrid design brings up to 42% and 25% improvement for 

latency and BW, respectively
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Application-level Evaluations

• 256 processes across 64 containers on 16 nodes 
• Compared with Default, enhanced-hybrid design reduces up to 16% (28,16) and 10% (LU) of 

execution time for Graph 500 and NAS, respectively
• Compared with the 1Layer case, enhanced-hybrid design also brings up to 12% (28,16) and 6%

(LU) performance benefit 

Class D NASGraph500
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• MVAPICH2-Virt with SR-IOV and IVSHMEM
– Standalone, OpenStack

• SR-IOV-enabled VM Migration Support in MVAPICH2

• MVAPICH2 with Containers (Docker and Singularity)

• MVAPICH2 with Nested Virtualization (Container over VM)

• MVAPICH2-Virt on SLURM
– SLURM alone, SLURM + OpenStack

• Big Data Libraries on Cloud
– RDMA-Hadoop, OpenStack Swift

Approaches to Build HPC Clouds
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• Requirement of managing and isolating virtualized resources of SR-IOV and IVSHMEM 

• Such kind of management and isolation is hard to be achieved by MPI library alone, but 
much easier with SLURM

• Efficient running MPI applications on HPC Clouds needs SLURM to support managing 
SR-IOV and IVSHMEM 

– Can critical HPC resources be efficiently shared among users by extending SLURM with 
support for SR-IOV and IVSHMEM based virtualization? 

– Can SR-IOV and IVSHMEM enabled SLURM and MPI library provide bare-metal performance 
for end applications on HPC Clouds?

Need for Supporting SR-IOV and IVSHMEM in SLURM
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load SPANK

reclaim VMs

register job 
step reply

register job 
step req

Slurmctld Slurmd Slurmd

release hosts

run job step req

run job step reply

mpirun_vm

MPI Job 
across VMs

VM Config
Reader

load SPANK
VM Launcher

load SPANK
VM Reclaimer

• VM Configuration Reader –
Register all VM configuration 
options, set in the job control 
environment so that they are 
visible to all allocated nodes. 

• VM Launcher – Setup VMs on 
each allocated nodes. 
- File based lock to detect occupied VF 
and exclusively allocate free VF

- Assign a unique ID to each IVSHMEM 
and dynamically attach to each VM

• VM Reclaimer – Tear down 
VMs and reclaim resources

SLURM SPANK Plugin based Design

MPIMPI

vm hostfile



OFAW 2017 40Network Based Computing Laboratory

• VM Configuration Reader – VM 
options register 

• VM Launcher, VM Reclaimer –
Offload to underlying OpenStack 
infrastructure
- PCI Whitelist to passthrough free VF to VM

- Extend Nova to enable IVSHMEM when 
launching VM

SLURM SPANK Plugin with OpenStack based Design

J. Zhang, X. Lu, S. Chakraborty, D. K. Panda. 
SLURM-V: Extending SLURM for Building Efficient 
HPC Cloud with SR-IOV and IVShmem. Euro-Par, 
2016

reclaim VMs

register job 
step reply

register job 
step req

Slurmctld Slurmd

release 
hosts

launch VM

mpirun_vm

load SPANK
VM Config

Reader

MPI

VM hostfile

OpenStack 
daemon

request launch VM
VM Launcher

return
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VM Reclaimer
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• 32 VMs across 8 nodes, 6 Core/VM

• EASJ - Compared to Native, less than 4% overhead with 128 Procs

• SACJ, EACJ – Also minor overhead, when running NAS as concurrent job with 64 Procs

Application-Level Performance on Chameleon (Graph500)
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• MVAPICH2-Virt with SR-IOV and IVSHMEM
– Standalone, OpenStack

• SR-IOV-enabled VM Migration Support in MVAPICH2

• MVAPICH2 with Containers (Docker and Singularity)

• MVAPICH2 with Nested Virtualization (Container over VM)

• MVAPICH2-Virt on SLURM
– SLURM alone, SLURM + OpenStack

• Big Data Libraries on Cloud
– RDMA-Hadoop, OpenStack Swift

Approaches to Build HPC Clouds
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• RDMA for Apache Spark 

• RDMA for Apache Hadoop 2.x (RDMA-Hadoop-2.x)

– Plugins for Apache, Hortonworks (HDP) and Cloudera (CDH) Hadoop distributions

• RDMA for Apache HBase

• RDMA for Memcached (RDMA-Memcached)

• RDMA for Apache Hadoop 1.x (RDMA-Hadoop)

• OSU HiBD-Benchmarks (OHB)

– HDFS, Memcached, HBase, and Spark Micro-benchmarks

• http://hibd.cse.ohio-state.edu

• Users Base: 215 organizations from 29 countries

• More than 21,000 downloads from the project site

The High-Performance Big Data (HiBD) Project

Available for InfiniBand and RoCE

http://hibd.cse.ohio-state.edu/
mailto:panda@cse.ohio-state.edu
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High-Performance Apache Hadoop over Clouds: Challenges
• How about performance characteristics of native IB-based designs for Apache 

Hadoop over SR-IOV enabled cloud environment?

• To achieve locality-aware communication, how can the cluster topology be 
automatically detected in a scalable and efficient manner and be exposed to the 
Hadoop framework?

• How can we design virtualization-aware policies in Hadoop for efficiently taking 
advantage of the detected topology?

• Can the proposed policies improve the performance and fault tolerance of 
Hadoop on virtualized platforms?

“How can we design a high-performance Hadoop library for Cloud-based systems?”
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Overview of RDMA-Hadoop-Virt Architecture
• Virtualization-aware modules in all the four 

main Hadoop components:
– HDFS: Virtualization-aware Block Management 

to improve fault-tolerance

– YARN: Extensions to Container Allocation Policy 
to reduce network traffic

– MapReduce: Extensions to Map Task Scheduling 
Policy to reduce network traffic

– Hadoop Common:  Topology Detection Module 
for automatic topology detection

• Communications in HDFS, MapReduce, and RPC 
go through RDMA-based designs over SR-IOV 
enabled InfiniBand

HDFS
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om

m
on

MapReduce
HBase Others

Virtual Machines Bare-Metal nodesContainers

Big Data Applications
To

po
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gy
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M
od

ul
e Map Task Scheduling 

Policy Extension

Container Allocation 
Policy Extension

CloudBurst MR-MS Polygraph Others

Virtualization Aware 
Block Management

S. Gugnani, X. Lu, D. K. Panda. Designing Virtualization-aware and Automatic Topology Detection Schemes for Accelerating Hadoop on 
SR-IOV-enabled Clouds. CloudCom, 2016. 
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Evaluation with Applications

– 14% and 24% improvement with Default Mode for CloudBurst and Self-Join

– 30% and 55% improvement with Distributed Mode for CloudBurst and Self-Join
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• Distributed Cloud-based Object Storage Service

• Deployed as part of OpenStack installation

• Can be deployed as standalone storage solution as well

• Worldwide data access via Internet

– HTTP-based

• Architecture

– Multiple Object Servers: To store data

– Few Proxy Servers:  Act as a proxy for all requests

– Ring: Handles metadata

• Usage
– Input/output source for Big Data applications (most common use 

case)

– Software/Data backup

– Storage of VM/Docker images 

• Based on traditional TCP sockets communication

OpenStack Swift Overview

Send PUT or GET request
PUT/GET /v1/<account>/<container>/<object>

Proxy 
Server

Object 
Server

Object 
Server

Object 
Server

Ring

Disk 1

Disk 2

Disk 1

Disk 2

Disk 1

Disk 2

Swift Architecture
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• Challenges

– Proxy server is a bottleneck for large scale deployments

– Object upload/download operations network intensive

– Can an RDMA-based approach benefit?

• Design

– Re-designed Swift architecture for improved scalability and 
performance; Two proposed designs:

• Client-Oblivious Design: No changes required on the client side

• Metadata Server-based Design: Direct communication between 
client and object servers; bypass proxy server

– RDMA-based communication framework for accelerating 
networking performance

– High-performance I/O framework to provide maximum 
overlap between communication and I/O

Swift-X: Accelerating OpenStack Swift with RDMA for Building 
Efficient HPC Clouds

S. Gugnani, X. Lu, and D. K. Panda, Swift-X: Accelerating OpenStack Swift with RDMA for Building an Efficient HPC Cloud, 
accepted at CCGrid’17,  May 2017

Client-Oblivious Design 
(D1)

Metadata Server-based 
Design (D2)
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Available Appliances on Chameleon Cloud*
Appliance Description

CentOS 7 KVM SR-
IOV

Chameleon bare-metal image customized with the KVM hypervisor and a 
recompiled kernel to enable SR-IOV over InfiniBand.
https://www.chameleoncloud.org/appliances/3/

MPI bare-metal 
cluster complex

appliance (Based on 
Heat)

This appliance deploys an MPI cluster composed of bare metal instances using the 
MVAPICH2 library over InfiniBand. 
https://www.chameleoncloud.org/appliances/29/

MPI + SR-IOV KVM 
cluster (Based on 

Heat)

This appliance deploys an MPI cluster of KVM virtual machines using the 
MVAPICH2-Virt implementation and configured with SR-IOV for high-performance 
communication over InfiniBand. https://www.chameleoncloud.org/appliances/28/

CentOS 7 SR-IOV 
RDMA-Hadoop

The CentOS 7 SR-IOV RDMA-Hadoop appliance is built from the CentOS 7 
appliance and additionally contains RDMA-Hadoop library with SR-IOV.
https://www.chameleoncloud.org/appliances/17/

• Through these available appliances, users and researchers can easily deploy HPC clouds to perform experiments and run jobs with
– High-Performance SR-IOV + InfiniBand

– High-Performance MVAPICH2 Library over bare-metal InfiniBand clusters

– High-Performance MVAPICH2 Library with Virtualization Support over SR-IOV enabled KVM clusters

– High-Performance Hadoop with RDMA-based Enhancements Support [*] Only include appliances contributed by OSU NowLab
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• MVAPICH2-Virt over SR-IOV-enabled InfiniBand is an efficient approach to build HPC Clouds
– Standalone, OpenStack, Slurm, and Slurm + OpenStack

– Support  Virtual Machine Migration with SR-IOV InfiniBand devices

– Support Virtual Machine, Container (Docker and Singularity), and Nested Virtualization

• Very little overhead with virtualization, near native performance at application level

• Much better performance than Amazon EC2

• MVAPICH2-Virt is available for building HPC Clouds
– SR-IOV, IVSHMEM, Docker support,  OpenStack

• Big Data analytics stacks such as RDMA-Hadoop can benefit from cloud-aware designs

• Appliances for MVAPICH2-Virt and RDMA-Hadoop are available for building HPC Clouds

• Future releases for supporting running MPI jobs in VMs/Containers with SLURM, etc.

• SR-IOV/container support and appliances for other MVAPICH2 libraries (MVAPICH2-X, 
MVAPICH2-GDR, ...) and RDMA-Spark/Memcached

Conclusions
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One More Presentation

• Friday (03/31/17) at 11:00am

NVM-aware RDMA-Based Communication and I/O Schemes for High-Perf Big 
Data Analytics
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