

13th ANNUAL WORKSHOP 2017

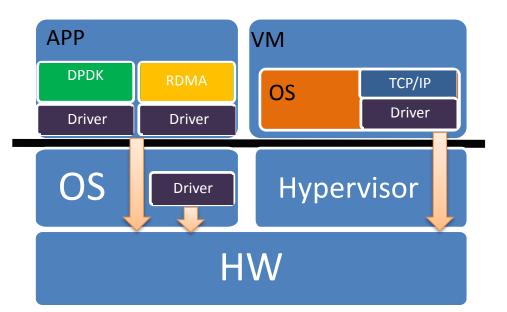
ON DEMAND PAGING EXPERIENCES

Liran Liss Mellanox Technologies

March, 2017

ABSTRACT

- IO and memory pinning
- The price of pinning
- The price of memory management
- Getting it all (1/2) On Demand Paging
- Getting it all (2/2) The address space key
- APIs
- Statistics
- Development
- Evaluation
- What's next?


IO AND PINNING

PCI devices are granted access to buffers

- NIC Tx/Rx buffers
- Guest physical pages when passing through a PCI device to a VM
- Underlying pages comprising an RDMA memory region

• Underlying pages must be available for DMA until IO completion

- Until an Rx buffer is used on a NIC
- The VM lifetime in PCI pass-through \mathbf{k} Large, long-lived mappings
- Memory region lifetime in RDMA

THE PRICE OF PINNING

No canonical memory optimizations

Demand paging	Over commitment	Page migration
Delayed allocation	Swapping	NUMA migration
Mmap-ed files	Deduplication	Compaction
Calloc with zero page	Copy on write	Transparent huge pages

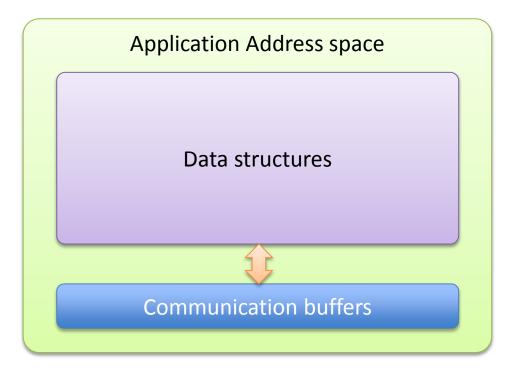
Complicates administration and deployment

- Unprivileged applications must be granted explicit rights to lock memory
- Worst-case pinning in the absence of a good alternative to estimate pinning requirements
- IO buffers limited to size of physical memory

THE PRICE OF MEMORY MANAGEMENT

- Application must be aware which memory is registered and which isn't
- Application-specific memory pools put aside decades of memory management development
 - OS
 - C runtime
 - Libraries

Memory registration is a major inhibitor to RDMA adoption

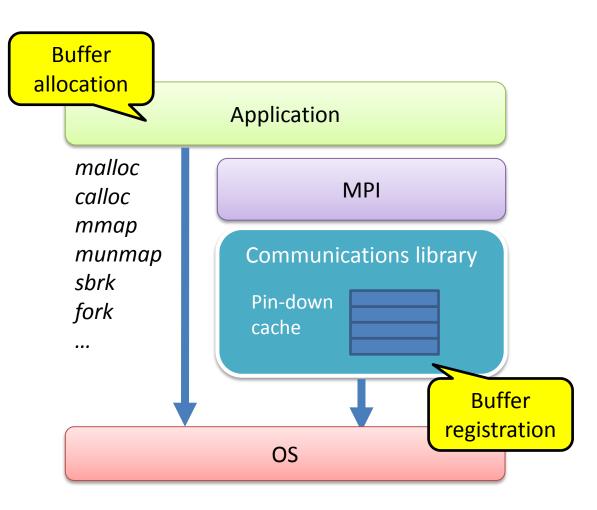

- Require complex, expert programming
- A non-starter for many new-comers

Fixed pool of buffers

- Data is copied in/out of these buffers for IO
- Efficient for small messages

Drawbacks

- Significant costs for large messages
- Hard to estimate pinned buffer size
 - Large variance between common-case and worst-case
 - Dynamic resizing is costly and difficult


MITIGATING COSTS: DYNAMIC PINNING

Pin-down cache libraries

- Pin/unpin buffers on the fly
- Amortize high pinning costs by caching registrations

Drawbacks

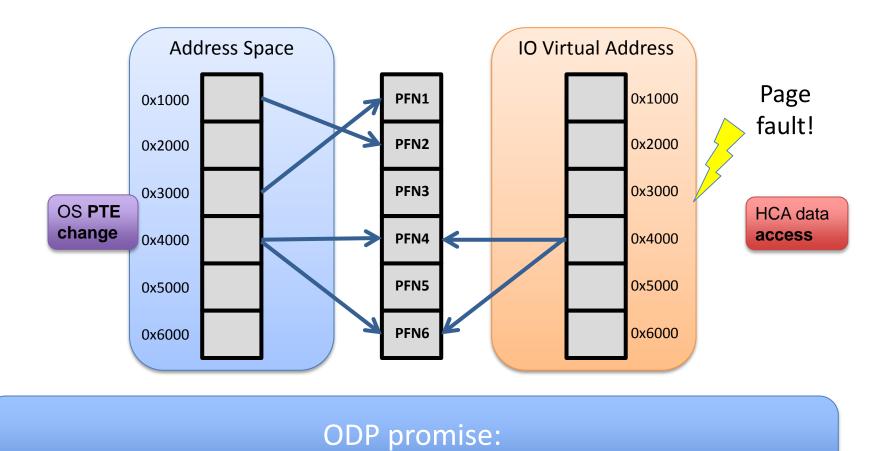
- Complex logic
- Hard to generalize due to software layering
- Hard to optimize
- Hard to track and maintain consistency
 - Need to hook every allocation / free function

GETTING IT ALL (1/2)

On Demand Paging

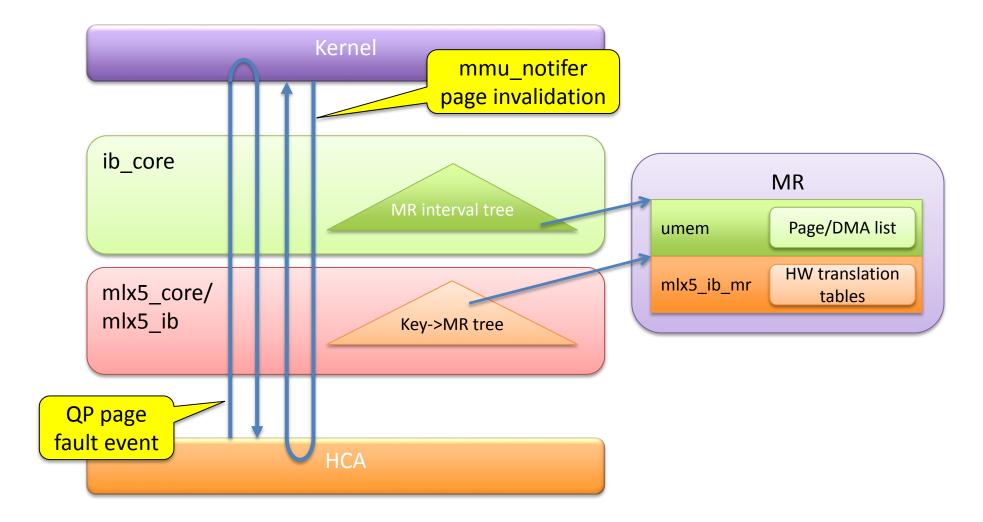
HCA translation tables may contain non-present pages

- Initially, a new MR is created with non-present pages
- Virtual memory mappings don't necessarily exist


• MR pages are never pinned by the OS

- Paged in when HCA needs them
- Paged out when reclaimed by the OS

Eliminates the price of pinning


- Unlimited MR sizes
 - No need for special privileges
- Physical memory optimized to hold current working set
 - For both CPU and IO access
- Application pages may be migrated at will

ODP OPERATION

IO virtual address mapping == Process virtual address mapping

ODP IMPLEMENTATION

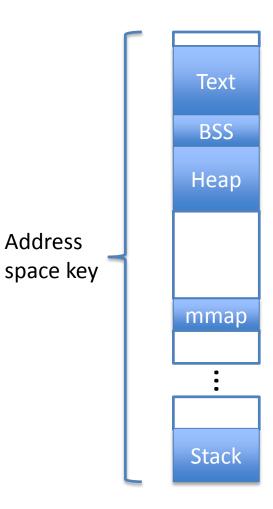
GETTING IT ALL (2/2)

Address Space Key

Register the whole process address space with a single key

MR covers existing and future memory mappings

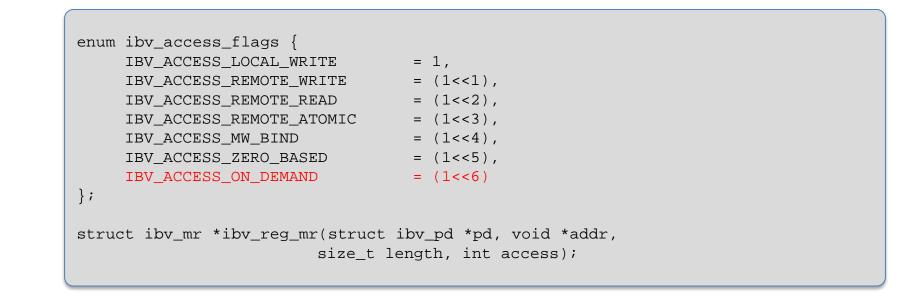
MR covers unmapped address ranges


- Permissions checked at access (page fault) time
 - VMA permissions
 - MR access rights
- RDMA access rights revoked upon invalidation or permission changes

Granular remote permissions via Memory Windows

• User-space equivalent for Fast Registration Work Requests...

Eliminates the price of memory management


- All data transfer done based on the address space key
- No need to register and track any other MRs

ODP CAPABILITIES

```
enum odp_transport_cap_bits {
       ODP_SUPPORT_SEND = 1 << 0,
       ODP_SUPPORT_RECV = 1 << 1,
       ODP_SUPPORT_WRITE = 1 << 2,
       ODP\_SUPPORT\_READ = 1 << 3,
       ODP_SUPPORT_ATOMIC = 1 << 4,
};
enum odp_general_caps {
       ODP SUPPORT = 1 << 0,
};
struct ibv_odp_caps {
       uint32_t comp_mask;
       uint32_t general_caps;
       struct {
               uint32_t rc_odp_caps;
               uint32_t uc_odp_caps;
               uint32_t ud_odp_caps;
        } per_transport_caps;
};
int ibv_query_odp_caps(struct ibv_context *context,
                      struct ibv_odp_caps *caps,
                      size_t caps_size);
```

ODP MEMORY REGIONS

Registering the whole address space

• ibv_reg_mr(pd, NULL, (u64) -1, flags)

USAGE EXAMPLE

```
int main()
{
    struct ibv_odp_caps caps;
    ibv_mr *mr;
    struct ibv_sge sge;
    struct ibv_send_wr wr;
    . . .
    if (ibv_query_odp_caps(ctx, &caps, sizeof(caps)) ||
        !(caps.rc_odp_caps & ODP_SUPPORT_SEND))
            return -1;
    mr = ibv_reg_mr(ctx->pd, NULL, -1, IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_ON_DEMAND);
    • • •
    p = mmap(NULL, 10 * MB, PROT_READ | PROT_WRITE, MAP_SHARED, 0, 0);
    . . .
    sge.addr = p;
    sge.lkey = mr->lkey;
    ibv_post_send(ctx->qp, &wr, &bad_wr);
    . . .
    return 0;
```

MEMORY PREFETCHING

Best effort hint

- Not necessarily all pages are pre-fetched
- No guarantees that pages remain resident
- Asynchronous
 - Can be invoked opportunistically in parallel to IO

Use cases

- Avoid multiple page faults by small transactions
- Pre-fault a large region about to be accessed by IO

EFAULT returned when

- Range exceeds the MR
- Requested range not mapped to address space

```
struct ibv_prefetch_attr {
    uint32_t comp_mask;
    int flags; /* IBV_ACCESS_LOCAL_WRITE */
    void *addr;
    size_t length;
};
int ibv_prefetch_mr(struct ibv_mr *mr,
        struct ibv_prefetch_attr *attr,
        size_t attr_size);
```

STATISTICS

Core statistics

- Maintained by the IB core layer
- Tracked on a per device basis
- Reported by sysfs

Use cases

- Page fault pattern
 - Warm-up
 - Steady state
- Paging efficiency
- Detect thrashing
- Measure pre-fetch impact

/sys/class/InfiniBand_verbs/uverbs<dev-idx>/
 invalidations_faults_contentions
 num_invalidation_pages
 num_invalidations
 num_page_fault_pages
 num_page_faults
 num_prefetches_handled

Counter name	Description
invalidations_faults_contentions	Number of times that page fault events were dropped or prefetch operations were restarted due to OS page invalidations
num_invalidation_pages	Total number of pages invalidated during all invalidation events
num_invalidations	Number of invalidation events
num_page_fault_pages	Total number of pages faulted in by page fault events
num_page_faults	Number of page fault events
num_prefetches_handled	Number of prefetch Verb calls that completed successfully

STATISTICS (CONTINUED)

Driver debug statistics

- Maintained by the mlx5 driver
- Tracked on a per device basis
- Reported by debugfs

Use cases

- Track accesses to non-mapped memory
- ODP MR usage

/sys/kernel/debug/mlx5/<pci-dev-id>/odp_stats/ num_failed_resolutions num_mrs_not_found num_odp_mr_pages num_odp_mrs

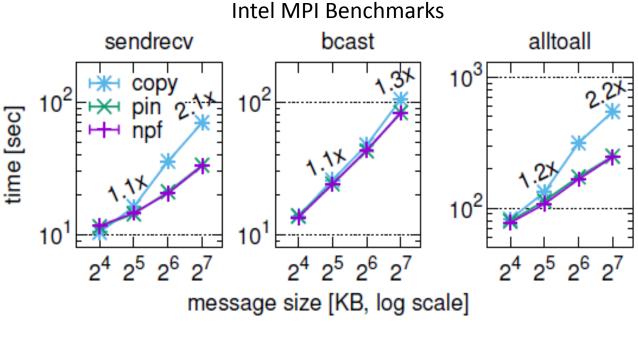
Counter name	Description
num_failed_resolutions	Number of failed page faults that could not be resolved due to non-existing mappings in the OS
num_mrs_not_found	Number of faults that specified a non-existing ODP MR
num_odp_mr_pages	Total size in pages of current ODP MRs
num_odp_mrs	Number of current ODP MRs

DEVELOPEMENT

Feature	Upstream	Mellanox OFED
RC Send-Receive, RDMA UD Send	3.19	2.3
Statistics	TBD	2.3
Pre-fetch	TBD	2.3
RC Atomics	4.11	3.4
Global MR	4.11	3.4
Memory Windows	TBD	3.4
DC Send, RDMA, Atomics	TBD	3.4
SRQ, DC Receive	TBD	Planned for 4.1
Huge-pages	TBD	Planned for 4.1

EVALUATION

- "Designing MPI library with on-demand paging (ODP) of InfiniBand: challenges and benefits"
 - Mingzhe Li, Khaled Hamidouche, Xiaoyi Lu, Hari Subramoni, Jie Zhang, Dhabaleswar K. Panda; in proc. of SC'16
 - Reported x11 reduction in memory footprint while matching pinned-buffer MPI performance


"Page Fault Support for Network Controllers"

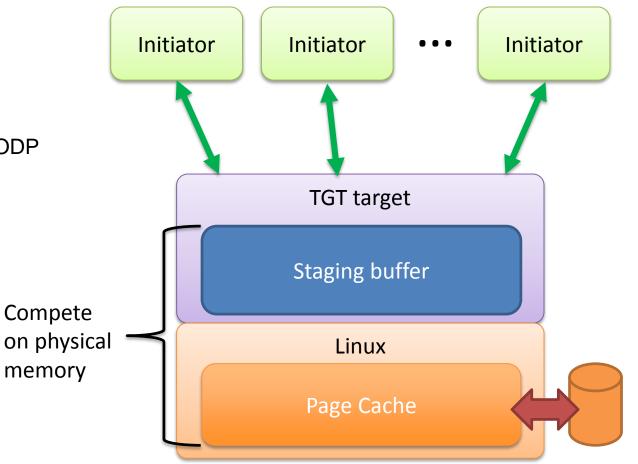
- Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy Shapiro, Sagi Grimberg, Liran Liss, Muli Ben-Yehuda, Nadav Amit, Dan Tsafrir; to appear in ASPLOS'17
- We evaluate ODP contribution for HPC, Storage, and user-level TCP

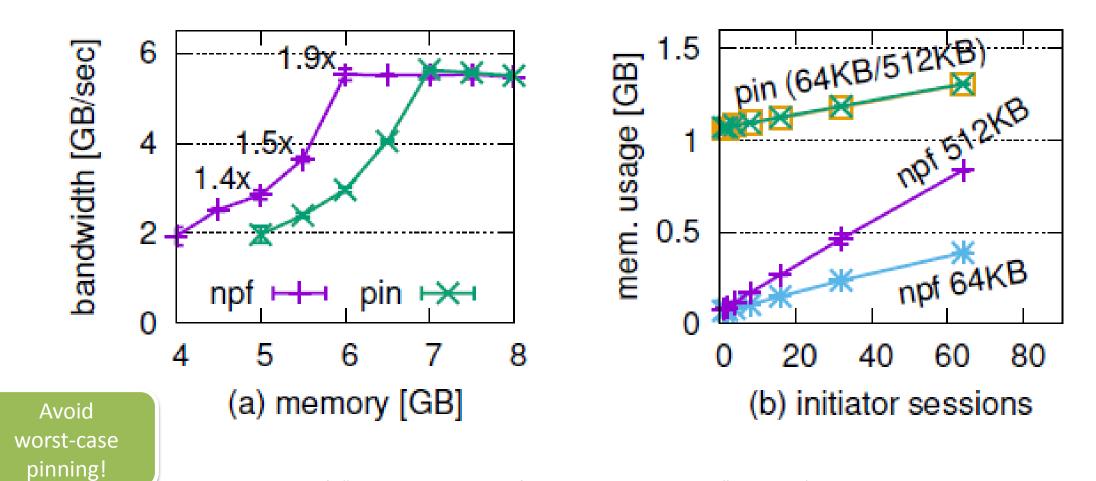
ODP IN HPC

Added OpenMPI ODP support

- Implemented in MXM library
- Removed 10K LOC of pin-down cache (!)
- Benchmarks
 - IMB application suite
 - B_eff
- Same performance as a state-of-the-art pinned 0-copy implementation

B_eff Benchmark


app	pinning	NPF	copying
beff	$16,410 \pm 45$	$16,440\pm10$	$8,020\pm20$


Ref: "Page Fault Support for Network Controllers", ASPLOS'17

ODP IN STORAGE

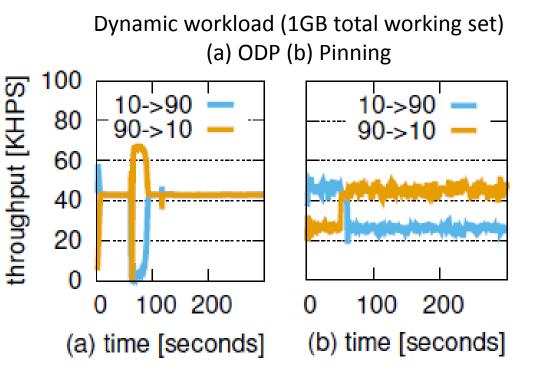
- Standard iSER initiator
 - Stock Linux kernel
- Modified iSER target
 - Based on open-source tgt project
 - Minor code modifications to register staging buffer as ODP
 - 10's LOCs
- fio benchmark
 - Random 64KB / 512KB reads

ODP IN STORAGE (CONT.)

Ref: "Page Fault Support for Network Controllers", ASPLOS'17

ODP IN USER-LEVEL TCP/IP

Added ODP support for IwIP TCP stack using Raw Ethernet QPs


Mimics VMs with PCI pass-through

Evaluated memcached server performance

Measured memasplap Get() hits-per-second

Static workload throughput (K Hits/sec)

memcached instances	1	2	3	4
NPF	186	311	407	484
pinning	185	310	N/A	N/A

Ref: "Page Fault Support for Network Controllers", ASPLOS'17

WHAT'S NEXT?

- MPI support for ODP
 - Already integrated into OSU MVAPICH
 - UCX integration in Q2'17

Accelerate RDMA adoption through ODP

- Efficient RDMA support for managed runtimes, e.g., Java, Python, Go
- CEPH, Hadoop, Spark, etc.

Enable GPU direct with shared CPU-GPU address spaces

RDMA into pages that migrate between CPU and GPU

RDMA and PMEM

• No need to pre-register huge PMEM file mappings

RDMA and coherent accelerators

- Accelerators will share a process address space
- Allow RDMA into and out of accelerator buffers

13th ANNUAL WORKSHOP 2017

THANK YOU Liran Liss Mellanox Technologies