
13th ANNUAL WORKSHOP 2017

USER VERBS FOR SCALED PERFORMANCE WITH SHARED
MEMORY

Santosh Shilimkar, Avneesh Pant, Sumanta Chatterjee & Amarnath Jolad
March 27, 2017

OpenFabrics Alliance Workshop 2017

AGENDA

▪Overview of Oracle Process and Shared Memory model.

▪Shortcoming of existing upstream verbs for large shared memory.

▪Shared PD API semantics and example usage.

▪Preliminary results with using Shared PD in Oracle.

▪Opportunity with using Large shared MR and potential verb API for it.

▪Possible inclusion of these verb extension to standards.

2

OpenFabrics Alliance Workshop 2017

ORACLE PROCESS - OVERVIEW

▪An “Oracle Process” is an execution entity

▪Run time instantiation of DB server code that executes user requests and
background tasks

▪An “Oracle Process” is not always an “OS process”
▪ a “OS Process” on most UNIX platforms by default.

▪ a “OS Thread”, default on Windows and available on most UNIX platforms.

▪ a “User thread” or “Fiber” available on Windows.

▪ Foreground/Shadow process : DB Server process created to service a client

▪Background process : processes created to perform DB specific tasks

OpenFabrics Alliance Workshop 2017

DATABASE INSTANCE & MEMORY MANAGEMENT

▪ Oracle instance is a collection of processes and shared
memory

▪ All processes map the shared memory symmetrically

▪ ~90% of memory is used for caching DB blocks.
Remaining used for various types of memory pools

▪ Memory can be dynamically moved between pools and
buffer cache under pressure.

▪ Want to perform RDMA transfers from any process to any
shared memory address.

▪ Large number of processes per node (20K+)

OpenFabrics Alliance Workshop 2017

ORACLE PROCESS: CLASSIC EXECUTION MODEL

Startup Foreground

C
M

O
N

PM
O

N

D
B

W
R

LG
W

R

Foreground

PQ
 Slave

Foreground

Foreground

Foreground

Foreground
SGA

Solid lines represent OS process boundaries

OpenFabrics Alliance Workshop 2017

ORACLE PROCESS: SINGLE PROCESS MULTI-THREADED MODE

Startup Foreground

C
M

O
N

PM
O

N

D
B

W
R

LG
W

R

Foreground

PQ
 Slave

Foreground

Foreground

Foreground

Foreground
SGA

OpenFabrics Alliance Workshop 2017

ORACLE PROCESS: THREADED EXECUTION MODEL

Startup Foreground

C
M

O
N

PM
O

N

D
B

W
R

LG
W

R

Foreground

PQ
 Slave

Foreground

Foreground

Foreground

Foreground
SGA

OpenFabrics Alliance Workshop 2017

SHARED PD VERB ORACLE USAGE

▪Attempting to register entire memory region in each process is not scalable.

▪ Hence Oracle uses shared PD support.
• Single process allocates a shared PD and registers all memory with it.

• Other processes use the same shared PD with their IB context.

• Allows sharing of memory registrations across all processes.

• Each process still creates separate QP/SQ/RQ/CQ etc.

• Re-use of memory mapping greatly reduces MPT and MTT entries for an instance leading to

performance improvements.

• PD is valid as long as there is one user process attached to it

8

OpenFabrics Alliance Workshop 20179

PROCESS-A

1. Allocate a PD using ibv_alloc_pd()

2. Mark the allocated PD as shareable using ibv_alloc_shpd() which return a ‘shpd’ handle.

3. Store the shared PD handle in shared memory to make it accessible to other processes.

4. Associate the allocated PD for further resource allocation.

PROCESS-B

1. Use the shared PD handle and retrieve the PD using ibv_share_pd()
2. Use the retrieved PD for its own IB resource management.
3. Associate the retrieved PD for its own resource allocation.

SHARED PD VERB USAGE MECHANICS

OpenFabrics Alliance Workshop 2017

▪Database Cache Fusion Usecase

• Node1(Exadata X5-2): 30 LMS Servers with 100 GB SGA: LMS is also called GCS(Global

Cache Service)

• Node2(Exadata X5-2): 100/2000 Clients. Minimal local cache of 1 GB to maximize reading

the Data blocks from remote LMS servers

▪ Infiniband Fabric with Mellanox Connext-X3 HCAs

• Mellanox HCAs Memory protection & Address translation is managed using MPT and MTT

tables.

• HCA MTT & MPT caches can be considered as TLB caches.

10

SHARED PD PERFORMANCE DATA : SETUP DETAILS

OpenFabrics Alliance Workshop 201711

SHARED PD PERF DATA: RX TIME, CLUSTER WAIT

Clients CU RcvTm(us) CU RcvTm(us) -
with ShPD

Cluster Wait (sec) Cluster Wait (sec)-
with ShPD

100 159.97 156.01 2,639 2,634

2000 265.01 134.28 2,933 1,445

0

70

140

210

280

#Clients
100 2000

CU RcvTm(us) CU RcvTm(us) - with ShPD

0

750

1,500

2,250

3,000

#Clients
100 2000

Cluster Wait (sec)
Cluster Wait (sec)- with ShPD

Remarks:
▪ CU RcvTime is the round

trip time to fetch a block
from remote instance
(includes CPU processing)

▪ Cluster Wait Time is
cumulative time waiting for
network IO

▪ Receive time and Cluster
Wait time is half with shared
PD vs no shared PD
▪ Benefit pronounced with

larger number of clients

OpenFabrics Alliance Workshop 201712

SHARED PD PERF DATA: MPT/MTT

Clients LMS MPT
(misses/s)

LMS MPT
(misses/s)

ShPD

LMS MTT
(misses/s)

LMS MTT
(misses/s)

ShPD

100
813.40 15.60 302,594.60 267,421.40

2000
454.20 45.20 198,924.60 176,391.20

0.00

225.00

450.00

675.00

900.00

#clinets
100 2000

LMS MPT (misses/s)
LMS MPT (misses/s) ShPD

0.00

80,000.00

160,000.00

240,000.00

320,000.00

#clients
100 2000

LMS MTT (misses/s)
LMS MTT (misses/s) ShPD

0.00

125,000.00

250,000.00

375,000.00

500,000.00

#clinets
100 2000

Client MPT (misses/s)
Client MPT (misses/s) ShPD

0.00

125,000.00

250,000.00

375,000.00

500,000.00

#clients
100 2000

Client MTT (misses/s)
Client MTT (misses/s) ShPD

Clients Client MPT
(misses/s)

Client MPT
(misses/s)

ShPD

Client MTT
(misses/s)

Client MTT
(misses/s)

ShPD

100
71,049.60 1,235.00 420,346.40 11,803.80

2000
486,088.20 173,697.00 494,301.80 385,486.80

Remarks:
▪ MPT misses on the client reduced by

2.5X to 3X with shared PD
▪ 20% reduction in MTT misses

OpenFabrics Alliance Workshop 2017

SHARED LARGE MR VERB USE CASE

▪Leveraging MTT cache with minimal entries by use of large/contiguous page(s) MR is well
known optimization. We would like to exploit it further by using such large MRs across
processes with a shared PD.

▪Mellanox team floated the idea with couple of experimental verbs (ibv_exp_reg_mr/
ibv_exp_reg_shared_mr) but looks like they fail off the radar.

▪Shared Large MR Verb:
1. Allocate and register a piece of contiguous memory using shared PD on process A
2. Map/attach to the memory allocated in (1) in another process B that is also sharing the same PD
3. Do direct IO operations to this memory in B using the shared memory registration i.e. don't want to duplicate

memory registration/keys/mtt in each process sharing this region.

▪The shared contiguous memory needs to be mapped with the same address across all
processes i.e. symmetric mapping of segments across processes.

13

OpenFabrics Alliance Workshop 2017

SHARED PD FURTHER USE CASE

▪Process private heaps created on symmetrically mapped region
• Automatically reclaimed on process exit

• Re-use HCA mappings for region across processes whose heaps resides within region

• Dynamically grow and register shared memory regions on demand

▪Allow building proxy communication models more efficiently
• Pool of background threads to progress communication on behalf of compute processes allowing for

better compute/communicate overlap

• Allow direct DMA access to private memory of processes (SHMEM symmetric heap allocated on the
node).

▪ Integrating with DPDK/SPDK infrastructure to share memory mapping and
registration across large number of initiator processes

14

OpenFabrics Alliance Workshop 2017

CONCLUSION

▪ Shared Memory use is common across applications and these verbs improve the
scaling for such use cases.

▪ The optimizations we are using/exploring are very generic, hardware agnostic and
would benefit RDMA technologies. We have been shipping it with IB HCAs and
also testing ROCE HCAs.

▪We believe they are potentially good candidates as standard verb API extensions.

15

13th ANNUAL WORKSHOP 2017

THANK YOU
Santosh Shilimkar, Avneesh Pant, Sumanta Chatterjee & Amarnath Jolad

OpenFabrics Alliance Workshop 2017

BACKUP

17

OpenFabrics Alliance Workshop 201718

SHARE PD API MAN PAGE(S)

IBV_ALLOC_SHPD(3) Libibverbs Programmer's Manual IBV_ALLOC_SHPD(3)

NAME
 ibv_alloc_shpd - allocate unique id for sharing a protection domain
 (PD).

SYNOPSIS
 #include <infiniband/verbs.h>

 struct ibv_shpd *ibv_alloc_shpd(struct ibv_pd *pd, uint64_t
 share_key, struct ibv_shpd *shpd);

DESCRIPTION
 ibv_alloc_shpd() allocates a unique identifier required for sharing the
 PD pd with another process. share_key is a 64 bit key which needs to
 be provided with ibv_share_pd() call by another process to share the
 same PD in that other process. The argument shpd specifies a pointer to
 a user allocated area where libibverbs can write the unique identifier
 for the pd.

RETURN VALUE
 ibv_alloc_shpd() returns shpd - a pointer to the area where the unique
 identifier is written - or NULL if the request fails.

NOTES
 ibv_alloc_shpd() can be called on a particular PD only once.

IBV_SHARE_PD(3) Libibverbs Programmer's Manual IBV_SHARE_PD(3)

NAME
 ibv_share_pd - share a protection domain (PD).

SYNOPSIS
 #include <infiniband/verbs.h>

 struct ibv_pd *ibv_share_pd(struct ibv_context *context,
 struct ibv_shpd *shpd, uint64_t share_key);

DESCRIPTION
 ibv_share_pd() shares the protection domain specified by a unique iden-
 tifier shpd for the RDMA device context context. share_key is the 64
 bit key used to generate the unique identifier shpd. ibv_pds created
 using ibv_share_pd() can be deallocated using ibv_dealloc_pd(). Libib-
 verbs keeps track of each instance of the shared PD and removes the PD
 from RDMA device when the last instance of the shared PD is deallo-
 cated.

RETURN VALUE
 ibv_share_pd() returns a pointer to the shared pd or NULL if the request fails.

NOTES
 Even though the same PD is shared by multiple contexts of an RDMA
 device or processes, the life span of each resource created in an
 'ibv_pd' linked to a context or process is limited by the life span of
 that instance of 'ibv_pd'. e.g. The life span of an MR mr1 created
 under ibv_pd pd1 (which is an instance of shared PD shPD1) will end
 whenever pd1 is deallocated, even though underlying shPD1 may continue
 to live on. Sharing PD is not supported among 'ibv_context' created for different
 RDMA devices.

