
13th ANNUAL WORKSHOP 2017

REMOTE PERSISTENT MEMORY ACCESS –
WORKLOAD SCENARIOS AND RDMA SEMANTICS

Tom Talpey

[March 31, 2017]
Microsoft

OpenFabrics Alliance Workshop 2017

OUTLINE

 Windows Persistent Memory Support
• A brief summary, for better awareness

 RDMA Persistent Memory Extensions
• And their motivation/use by Storage Protocols

 Example Application Scenarios for Persistent Memory Operations
• RDMA Operation Behavior

2

OpenFabrics Alliance Workshop 2017

WINDOWS PERSISTENT MEMORY SUPPORT

3

OpenFabrics Alliance Workshop 2017

WINDOWS PMEM SUPPORT

 Persistent Memory is supported in Windows 10 and Windows Server 2016
• PM support is foundational in Windows and is SKU-independent

 Support for JEDEC-defined NVDIMM-N devices available in
• Windows Server 2016
• Windows 10 (Anniversary Update – Fall 2016)

 Access methods:

Direct Access (DAX) Filesystem
• Mapped files with load/store/flush paradigm
• Cached and noncached with read/write paradigm

Block-mode (“persistent ramdisk”)
• Raw disk paradigm

Application interfaces
• Mapped and traditional file
• NVM Programming Library
• “PMEM-aware” open coded

4

OpenFabrics Alliance Workshop 2017

DIRECT ACCESS ARCHITECTURE

Overview

Characteristics

SCM Disk DriverSCM Bus Driver

Block Mode
Application

Standard File API

SCM

DirectAccess
Application

Load/Store

Operations

SCM-Aware File System (NTFS -
DAX)

Application
requests memory-

mapped file

Enumerates
NVDIMM

User Mode

Kernel Mode

Memory
Mapped
Region

Memory
Mapped
Region

Load/Store

Operations

Direct Access

Data Path

Direct Access

Setup Path

5

OpenFabrics Alliance Workshop 2017

IO IN DAX MODE

 Memory Mapped Access
• This is true zero-copy access to storage

• An application has direct access to persistent memory
• Important  No paging reads or paging writes will be generated

 Cached IO Access
• The cache manager creates a cache map that maps directly to PM hardware
• The cache manager copies directly between user’s buffer and persistent memory

• Cached IO has one-copy access to persistent storage
• Cached IO is coherent with memory mapped IO
• As in memory mapped IO, no paging reads or paging writes are generated

• No Cache Manager Lazy Writer thread

 Non-Cached IO Access
• Is simply converted to cached IO by the file system

• Cache manager copies directly between user’s buffer and persistent memory
• Is coherent with cached and memory mapped IO

6

OpenFabrics Alliance Workshop 2017

BACKWARD APP COMPATIBILITY ON PM HARDWARE

 Block Mode Volumes
• Maintains existing storage semantics

• All IO operations traverse the storage stack to the PM disk driver
• Sector atomicity guaranteed by the PM disk driver
• Has shortened path length through the storage stack to reduce latency

• No storport or miniport drivers
• No SCSI translations

• Fully compatible with existing applications
• Supported by all Windows file systems
• Works with existing file system filters
• Block mode vs. DAX mode is chosen at format time

7

OpenFabrics Alliance Workshop 2017

PERFORMANCE COMPARISON

4K random writes
1 Thread, single core

IOPS Avg Latency (ns) MB / Sec
NVMe SSD 14,553 66,632 56.85

Block Mode
NVDIMM

148,567 6,418 580.34

DAX Mode
NVDIMM

1,112,007 828 4,343.78

8

OpenFabrics Alliance Workshop 2017

USING DAX IN WINDOWS

DAX Volume Creation

DAX Volume Identification

9

OpenFabrics Alliance Workshop 2017

USING DAX IN WINDOWS

Memory Mapping

10

OpenFabrics Alliance Workshop 2017

REMOTE ACCESS TO PERSISTENT MEMORY

11

OpenFabrics Alliance Workshop 2017

GOING REMOTE

 One local copy of storage isn’t storage at all
• Basically, temp data

 Enterprise-grade storage requires replication
• Multi-device quorum
• In addition to integrity, privacy, manageability, … (requirements vary)

 Remote access is required

 Pmem value is all about LATENCY
• Single digit microsecond remote latency goal
• Which btw is 2-3 orders of magnitude better than today’s block storage

• We can take steps to get there, with great benefit at each

Use RDMA
• Requires an RDMA protocol extension

12

OpenFabrics Alliance Workshop 2017

RDMA PROTOCOLS

 Need a remote guarantee of Durability
 RDMA Write alone is not sufficient for this semantic

• This is an RDMA conference, you know that 

 An extension is required
• Proposed “RDMA Commit”, a.k.a. “RDMA Flush”

 Executes like RDMA Read
• Ordered, Flow controlled, acknowledged
• Initiator requests specific byte ranges to be made durable
• Responder acknowledges only when durability complete
• Strong consensus on these basics

 Being discussed in IBTA, SNIA and other venues
• Details being worked out
• Scope of durability: region-based, region-list-based, connection, all under discussion

• Connection scope seems most efficient for implementations
• Additional semantics possible (later in this deck)

13

OpenFabrics Alliance Workshop 2017

RDMA-AWARE STORAGE PROTOCOL USE

 SMB3/SMB Direct
• “Push Mode”

 NFS/RDMA
• See Chuck Lever’s Tuesday presentation

 Other
• Commit can work to any remotely-mappable device, e.g. NVMe with a PCIe BAR
• Anything that can be memory-registered and accessed via RDMA

 Note to OFA: there will be Verbs.

14

OpenFabrics Alliance Workshop 2017

1

2

3

1 Traditional i/o
2 DAX load/store by
SMB3 Server
3 Push Mode direct
from RDMA NIC

EXAMPLE: GOING REMOTE – SMB3

SMB3 RDMA and “Push
Mode” discussed at
previous SNIA Storage
Developers Conferences
Enables zero-copy remote

read/write to DAX file
• Ultra-low latency and overhead

2, 3 can enable even before
RDMA Commit extensions
become available, with
slight extra cost

15

SMB3 Server

RDMA NIC

SMB3

RDMA
Push/

Commit

“Buffer Cache”

RDMA R/W

Load/Store

DAX Filesystem

PMEM

I/O
requests

Direct file
mapping

OpenFabrics Alliance Workshop 2017

REMOTE PMEM WORKLOADS

16

OpenFabrics Alliance Workshop 2017

BASIC REPLICATION

 Write, optionally more Writes, Commit
• No overwrite
• No ordering dependency (but see logwriter and non-posted write)
• No completions at data sink
• Can be pipelined

 Other semantics:
• Asynchronous mode

• Discussion in SNIA NVMP TWG
• Where it’s affectionately named “Giddy-Up”

• Local API behavior at initiator to perform Commit asynchronously
• Enables remote write-behind for load/store access, among other scenarios
• Complicates error recovery, but in well-defined way

• Reads are interesting too
• But easily interleaved with writes/commits

No protocol implications (envisioned)

17

OpenFabrics Alliance Workshop 2017

LOG WRITER (FILESYSTEM)

 For (ever)
{ Write log record, Commit }, { Write log pointer, Commit }

• Latency is critical
• Log pointer cannot be placed until log record is successfully made durable

• Log pointer is the validity indicator for the log record
• Transaction model

• Log records are eventually retired, buffer is circular
 Protocol implications:

• Must wait for first commit (and possibly the second)
• Introduces a pipeline bubble – very bad for throughput and overall latency
• Desire an ordering between Commit and second Write
 Possible solution: “Non-posted write”

• Special Write which executes “like a Read” – ordered with other non-posted operations
• For example, Commits, Reads

• Being discussed in IBTA

18

OpenFabrics Alliance Workshop 2017

LOG WRITER (DATABASE)

 For (ever)
While (!full) { Write log record, Commit }
Commit log segment

Persist segment to disk (asynchronously)

• Log record write/commit latency (red 1/2) critical
• Log segment persist to disk latency (green ¾) not critical
• Large improvement to database transaction rate

• Approximately 2x for SQL Hekaton*

 Very similar to log-based filesystem scenario
• Similar RDMA protocol implication, but see next

19

SSD (Block)

NVDIMM-N (Byte)

Log Buffers

Log File
Configuration HK on NVMe (block) HK on NVDIMM-N (DAX)

Row Updates / Second 63,246 124,917

Avg. Time / Txn (ms) 0.379 0.192

OpenFabrics Alliance Workshop 2017

LOG WRITE WITH ACTIVE-ACTIVE SIGNALING

 After log record replication, how to make peer aware of it?
• Non-posted operations do not generate peer completions

• E.g. Commit, RDMA Read, Atomic
• … and are not ordered with Posted operations (e.g. Send, Write with Immediate)

 Desire to generate a peer completion, only after durability achieved
 Simple way: initiator waits for Commit completion

• Using an initiator Fence, or explicitly waiting
• Pipeline bubble (bad for latency)

 Better way: ordered operation rule at target
• Under discussion as part of the extension

20

OpenFabrics Alliance Workshop 2017

REMOTE DATA INTEGRITY

 Assuming we have an RDMA Write + RDMA Commit
 And the Writes + Commit all complete (with success or failure)
 How does the initiator know the data is intact?

• Or in case of failure, which data is not intact?

 Possibilities:
• Reading back

• extremely undesirable (and possibly not actually reading media!)
• Signaling upper layer

• high overhead
• Upper layer possibly unavailable (the “Memory-Only Appliance”!)

• Other?

 Same question applies also to:
• Array “scrub”
• Storage management and recovery
• etc

21

OpenFabrics Alliance Workshop 2017

RDMA “VERIFY”

 Concept: add integrity hashes to a new operation
• Or, possibly, piggybacked on Commit
• Note, not unlike SCSI T10 DIF
 Hash algorithms to be negotiated by upper layers
 Hashing implemented in RNIC or Library “implementation”

• Which could be in
• Platform, e.g. storage device itself
• RNIC hardware/firmware, e.g. RNIC performs readback/integrity computation
• Other hardware on target platform, e.g. chipset, memory controller
• Software, e.g. target CPU

• Ideally, as efficiently as possible
 Options:

A. Source requests hash computation, receives hash as result, performs own comparison
B. Source sends hash to target, target computes and compares, returns success/failure
C. ???
 Under discussion in SNIA NVMP TWG OptimizedFlushAndVerify()

22

OpenFabrics Alliance Workshop 2017

THE (NEAR?) FUTURE

 Hope to see all the above remote scenarios supported
 Operating system support well established (Windows, Linux)
 Protocol standards process well under way
 High hopes for 2017!

23

13th ANNUAL WORKSHOP 2017

THANK YOU

	Remote Persistent Memory Access –� Workload Scenarios and RDMA Semantics
	Outline
	Windows Persistent Memory Support
	Windows PMEM Support
	Direct Access Architecture
	IO in DAX mode
	Backward App Compatibility on PM Hardware
	Performance Comparison
	Using DAX in Windows
	Using DAX in Windows
	Remote Access to Persistent Memory
	Going Remote
	RDMA Protocols	
	RDMA-Aware Storage Protocol Use
	Example: Going Remote – SMB3
	Remote Pmem Workloads
	Basic Replication
	Log Writer (Filesystem)
	Log Writer (Database)
	Log Write With Active-Active Signaling
	Remote Data Integrity
	RDMA “VERIFY”
	The (NEAR?) FUTURE
	THANK YOU

