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OUTLINE

 Windows Persistent Memory Support
• A brief summary, for better awareness

 RDMA Persistent Memory Extensions
• And their motivation/use by Storage Protocols

 Example Application Scenarios for Persistent Memory Operations
• RDMA Operation Behavior
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WINDOWS PERSISTENT MEMORY SUPPORT
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WINDOWS PMEM SUPPORT

 Persistent Memory is supported in Windows 10 and Windows Server 2016
• PM support is foundational in Windows and is SKU-independent

 Support for JEDEC-defined NVDIMM-N devices available in
• Windows Server 2016
• Windows 10 (Anniversary Update – Fall 2016)

 Access methods:

Direct Access (DAX) Filesystem
• Mapped files with load/store/flush paradigm
• Cached and noncached with read/write paradigm

Block-mode (“persistent ramdisk”)
• Raw disk paradigm

Application interfaces
• Mapped and traditional file
• NVM Programming Library
• “PMEM-aware” open coded
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DIRECT ACCESS ARCHITECTURE
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IO IN DAX MODE

 Memory Mapped Access
• This is true zero-copy access to storage

• An application has direct access to persistent memory
• Important  No paging reads or paging writes will be generated

 Cached IO Access
• The cache manager creates a cache map that maps directly to PM hardware
• The cache manager copies directly between user’s buffer and persistent memory

• Cached IO has one-copy access to persistent storage
• Cached IO is coherent with memory mapped IO
• As in memory mapped IO, no paging reads or paging writes are generated

• No Cache Manager Lazy Writer thread

 Non-Cached IO Access
• Is simply converted to cached IO by the file system

• Cache manager copies directly between user’s buffer and persistent memory
• Is coherent with cached and memory mapped IO
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BACKWARD APP COMPATIBILITY ON PM HARDWARE

 Block Mode Volumes
• Maintains existing storage semantics

• All IO operations traverse the storage stack to the PM disk driver
• Sector atomicity guaranteed by the PM disk driver
• Has shortened path length through the storage stack to reduce latency

• No storport or miniport drivers
• No SCSI translations

• Fully compatible with existing applications
• Supported by all Windows file systems
• Works with existing file system filters
• Block mode vs. DAX mode is chosen at format time
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PERFORMANCE COMPARISON

4K random writes
1 Thread, single core

IOPS Avg Latency (ns) MB / Sec
NVMe SSD 14,553 66,632 56.85

Block Mode 
NVDIMM

148,567 6,418 580.34

DAX Mode 
NVDIMM

1,112,007 828 4,343.78
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USING DAX IN WINDOWS

DAX Volume Creation

DAX Volume Identification
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USING DAX IN WINDOWS

Memory Mapping
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REMOTE ACCESS TO PERSISTENT MEMORY

11



OpenFabrics Alliance Workshop 2017

GOING REMOTE

 One local copy of storage isn’t storage at all
• Basically, temp data

 Enterprise-grade storage requires replication
• Multi-device quorum
• In addition to integrity, privacy, manageability, … (requirements vary)

 Remote access is required

 Pmem value is all about LATENCY
• Single digit microsecond remote latency goal
• Which btw is 2-3 orders of magnitude better than today’s block storage

• We can take steps to get there, with great benefit at each

Use RDMA
• Requires an RDMA protocol extension
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RDMA PROTOCOLS

 Need a remote guarantee of Durability
 RDMA Write alone is not sufficient for this semantic

• This is an RDMA conference, you know that 

 An extension is required
• Proposed “RDMA Commit”, a.k.a. “RDMA Flush”

 Executes like RDMA Read
• Ordered, Flow controlled, acknowledged
• Initiator requests specific byte ranges to be made durable
• Responder acknowledges only when durability complete
• Strong consensus on these basics

 Being discussed in IBTA, SNIA and other venues
• Details being worked out
• Scope of durability: region-based, region-list-based, connection, all under discussion

• Connection scope seems most efficient for implementations
• Additional semantics possible (later in this deck)
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RDMA-AWARE STORAGE PROTOCOL USE

 SMB3/SMB Direct
• “Push Mode”

 NFS/RDMA
• See Chuck Lever’s Tuesday presentation

 Other
• Commit can work to any remotely-mappable device, e.g. NVMe with a PCIe BAR
• Anything that can be memory-registered and accessed via RDMA

 Note to OFA: there will be Verbs.
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1

2

3

1 Traditional i/o
2 DAX load/store by 
SMB3 Server
3 Push Mode direct 
from RDMA NIC

EXAMPLE: GOING REMOTE – SMB3

SMB3 RDMA and “Push 
Mode” discussed at 
previous SNIA Storage 
Developers Conferences
Enables zero-copy remote 

read/write to DAX file
• Ultra-low latency and overhead

2, 3 can enable even before
RDMA Commit extensions 
become available, with 
slight extra cost
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REMOTE PMEM WORKLOADS
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BASIC REPLICATION

 Write, optionally more Writes, Commit
• No overwrite
• No ordering dependency (but see logwriter and non-posted write)
• No completions at data sink
• Can be pipelined

 Other semantics:
• Asynchronous mode

• Discussion in SNIA NVMP TWG
• Where it’s affectionately named “Giddy-Up”

• Local API behavior at initiator to perform Commit asynchronously
• Enables remote write-behind for load/store access, among other scenarios
• Complicates error recovery, but in well-defined way

• Reads are interesting too
• But easily interleaved with writes/commits

No protocol implications (envisioned)
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LOG WRITER (FILESYSTEM)

 For (ever)
{ Write log record, Commit }, { Write log pointer, Commit }

• Latency is critical
• Log pointer cannot be placed until log record is successfully made durable

• Log pointer is the validity indicator for the log record
• Transaction model

• Log records are eventually retired, buffer is circular
 Protocol implications:

• Must wait for first commit (and possibly the second)
• Introduces a pipeline bubble – very bad for throughput and overall latency
• Desire an ordering between Commit and second Write
 Possible solution: “Non-posted write”

• Special Write which executes “like a Read” – ordered with other non-posted operations
• For example, Commits, Reads

• Being discussed in IBTA
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LOG WRITER (DATABASE)

 For (ever)
While (!full) { Write log record, Commit }
Commit log segment

Persist segment to disk (asynchronously)

• Log record write/commit latency (red 1/2) critical
• Log segment persist to disk latency (green ¾) not critical
• Large improvement to database transaction rate

• Approximately 2x for SQL Hekaton*

 Very similar to log-based filesystem scenario
• Similar RDMA protocol implication, but see next
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SSD (Block)

NVDIMM-N (Byte)

Log Buffers

Log File
Configuration HK on NVMe (block) HK on NVDIMM-N (DAX)

Row Updates / Second 63,246 124,917

Avg. Time / Txn (ms) 0.379 0.192
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LOG WRITE WITH ACTIVE-ACTIVE SIGNALING

 After log record replication, how to make peer aware of it?
• Non-posted operations do not generate peer completions

• E.g. Commit, RDMA Read, Atomic
• … and are not ordered with Posted operations (e.g. Send, Write with Immediate)

 Desire to generate a peer completion, only after durability achieved
 Simple way: initiator waits for Commit completion

• Using an initiator Fence, or explicitly waiting
• Pipeline bubble (bad for latency)

 Better way: ordered operation rule at target
• Under discussion as part of the extension
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REMOTE DATA INTEGRITY

 Assuming we have an RDMA Write + RDMA Commit
 And the Writes + Commit all complete (with success or failure)
 How does the initiator know the data is intact?

• Or in case of failure, which data is not intact?

 Possibilities:
• Reading back

• extremely undesirable (and possibly not actually reading media!)
• Signaling upper layer

• high overhead
• Upper layer possibly unavailable (the “Memory-Only Appliance”!)

• Other?

 Same question applies also to:
• Array “scrub”
• Storage management and recovery
• etc
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RDMA “VERIFY”

 Concept: add integrity hashes to a new operation
• Or, possibly, piggybacked on Commit
• Note, not unlike SCSI T10 DIF
 Hash algorithms to be negotiated by upper layers
 Hashing implemented in RNIC or Library “implementation”

• Which could be in
• Platform, e.g. storage device itself
• RNIC hardware/firmware, e.g. RNIC performs readback/integrity computation
• Other hardware on target platform, e.g. chipset, memory controller
• Software, e.g. target CPU

• Ideally, as efficiently as possible
 Options:

A. Source requests hash computation, receives hash as result, performs own comparison
B. Source sends hash to target, target computes and compares, returns success/failure
C. ???
 Under discussion in SNIA NVMP TWG OptimizedFlushAndVerify()
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THE (NEAR?) FUTURE

 Hope to see all the above remote scenarios supported
 Operating system support well established (Windows, Linux)
 Protocol standards process well under way
 High hopes for 2017!
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