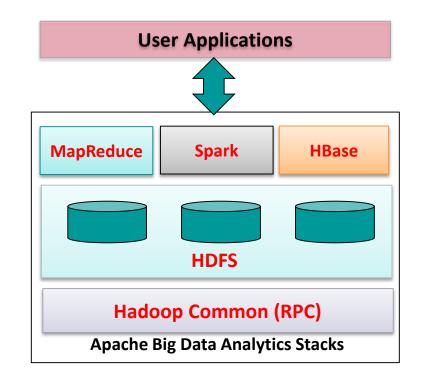


NVM-aware RDMA-based Communication and I/O Schemes for High-Performance Big Data Analytics

Talk at OpenFabrics Alliance Workshop (OFAW '17)

by

Xiaoyi Lu


The Ohio State University E-mail: luxi@cse.ohio-state.edu http://www.cse.ohio-state.edu/~luxi

Dhabaleswar K. (DK) Panda

The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

Big Data Processing with Apache Big Data Analytics Stacks

- Major components included:
 - MapReduce (Batch)
 - Spark (Iterative and Interactive)
 - HBase (Query)
 - HDFS (Storage)
 - RPC (Inter-process communication)
- Underlying Hadoop Distributed File System (HDFS) used by MapReduce, Spark, HBase, and many others
- Model scales but high amount of communication and I/O can be further optimized!

Drivers of Modern HPC Cluster and Data Center Architecture

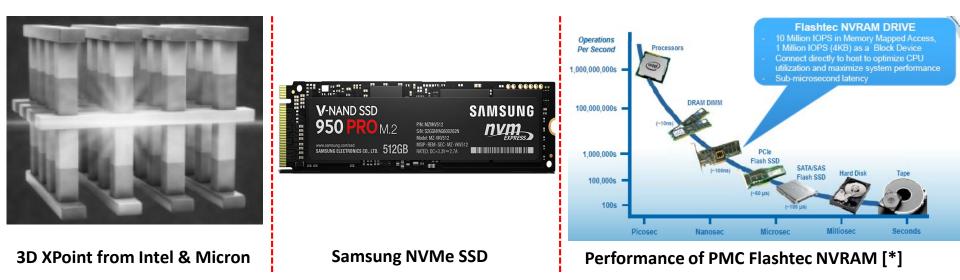
Multi-/Many-core Processors

High Performance Interconnects -InfiniBand (with SR-IOV) <1usec latency, 200Gbps Bandwidth>

Accelerators / Coprocessors high compute density, high performance/watt >1 TFlop DP on a chip

SSD, NVMe-SSD, NVRAM

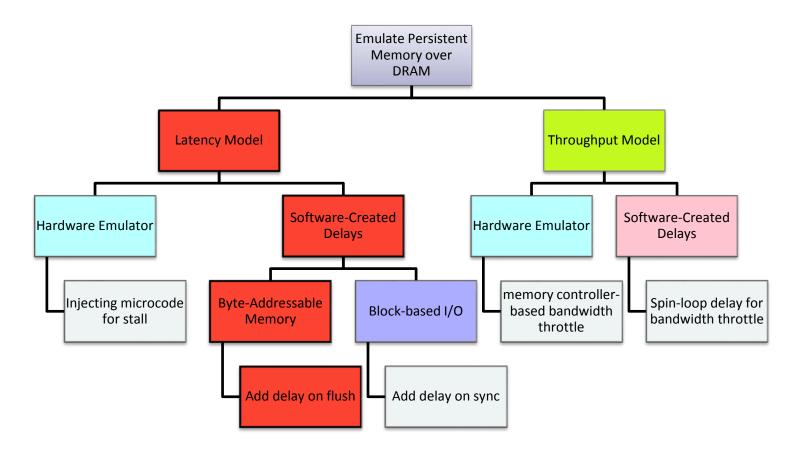
- Multi-core/many-core technologies
- Accelerators (NVIDIA GPGPUs and Intel Xeon Phi)
- Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)
- NVRAM, SSD, Parallel Filesystems, Object Storage Clusters



NVMW '17

Presentation Outline

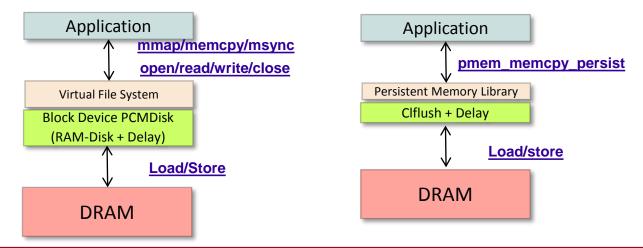
- Understanding NVRAM and RDMA
- NRCIO: NVM-aware RDMA-based Communication and I/O Schemes
- NRCIO for Big Data Analytics
- Conclusion and Q&A


Non-Volatile Memory (NVM) and NVMe-SSD

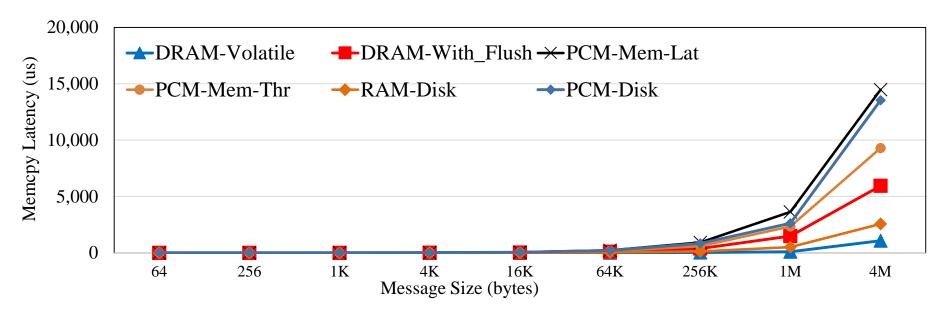
- Non-Volatile Memory (NVM) provides byte-addressability with persistence
- The huge explosion of data in diverse fields require fast analysis and storage
- NVMs provide the opportunity to build high-throughput storage systems for data-intensive applications
- Storage technology is moving rapidly towards NVM

[*] http://www.enterprisetech.com/2014/08/06/ flashtec-nvram-15-million-iops-sub-microsecond- latency/

NVRAM Emulation Techniques


Software-based NVRAM Emulation

- Latency Model
 - slower memory writes
 PCM : clflush + delay
 PCM-Disk : msync + delay
 - Delays inserted using a spinloop (RDTSCP) or NOPS
 - E.g., Mnemosyne¹ Library,
 PCMSIM², etc.


- Throughput Model
 - Throttle bandwidth by inserting delays Latency = size * (1 - (PCM_BW/DRAM_BW)) / PCM_BW
 - Delays inserted using a spin-loop (RDTSCP) or NOPS
 - E.g., Mnemosyne PCMDisk¹

NVRAM Emulation based on DRAM

- Popular methods employed by recent works to emulate NVRAM performance model over DRAM
- Two ways:
 - Emulate byte-addressable NVRAM over DRAM
 - Emulate block-based NVM device over DRAM

Performance Evaluation of memcpy over PCM

- Latency Comparison of memcpy operations with NVRAM Latency and Throughput emulation models for PCM (PCM-write-delay = 150 ns and PCM-read-delay = 50 ns)
- PCM-Mem (pmem.io NVML library over DRAM + delay) vs. Mnemosyne PCM-Disk
- PCM-Disk/PCM-Mem-Lat models show >6x overhead over RAMDisk with sync

High-Performance Interconnects and Protocols

- High-Performance Computing (HPC) has adopted advanced interconnects and protocols
 - InfiniBand
 - 10/40/100 Gigabit Ethernet/iWARP
 - RDMA over Converged Enhanced Ethernet (RoCE)
- Very Good Performance
 - Low latency (few micro seconds)
 - High Bandwidth (100 Gb/s with EDR InfiniBand)
 - Low CPU overhead (5-10%)
- OpenFabrics software stack with IB, iWARP and RoCE interfaces are driving HPC systems

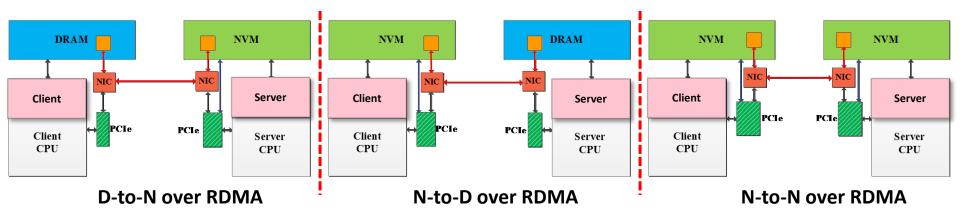
The High-Performance Big Data (HiBD) Project

- RDMA for Apache Spark
- RDMA for Apache Hadoop 2.x (RDMA-Hadoop-2.x)
 - Plugins for Apache, Hortonworks (HDP) and Cloudera (CDH) Hadoop distributions
- RDMA for Apache HBase
- RDMA for Memcached (RDMA-Memcached)
- RDMA for Apache Hadoop 1.x (RDMA-Hadoop)
- OSU HiBD-Benchmarks (OHB)
 - HDFS, Memcached, HBase, and Spark Micro-benchmarks
- <u>http://hibd.cse.ohio-state.edu</u>
- Users Base: 215 organizations from 29 countries
- More than 21,000 downloads from the project site

NVMW '17

Available for InfiniBand and RoCE

Significant performance improvement with 'RDMA+DRAM' compared to default Sockets-based designs; How about RDMA+NVRAM?

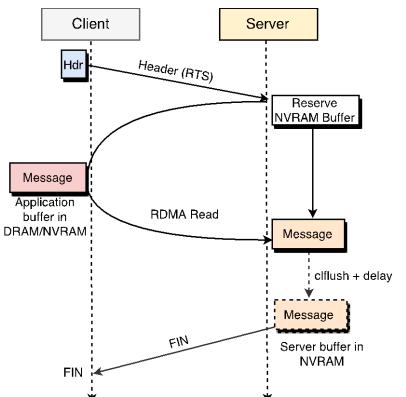


Presentation Outline

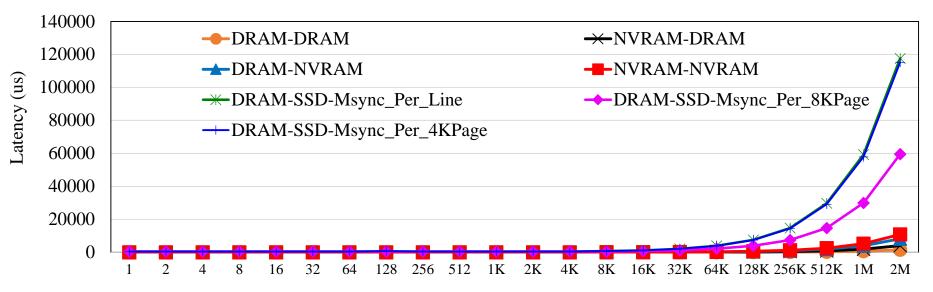
- Understanding NVRAM and RDMA
- NRCIO: NVM-aware RDMA-based Communication and I/O Schemes
- NRCIO for Big Data Analytics
- Conclusion and Q&A

Design Scope (NVM for RDMA)

D-to-D over RDMA: Communication buffers for client and server are allocated in DRAM (Common)

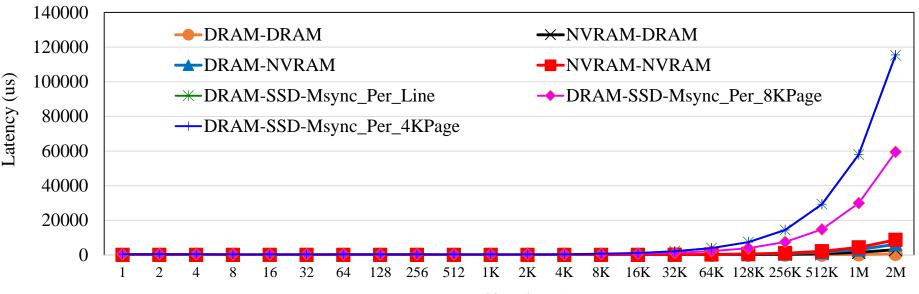

D-to-N over RDMA: Communication buffers for client are allocated in DRAM; Server uses NVM N-to-D over RDMA: Communication buffers for client are allocated in NVM; Server uses DRAM N-to-N over RDMA: Communication buffers for client and server are allocated in NVM

NVRAM-aware Communication in NRCIO


Client Server Application buffer in DRAM/NVRAM Message memcpy Header + Payload Hdr Message DRAM buffer Hdr Message memcpy clflush + delay Message ACK Server buffer in **NVRAM** ACK

NRCIO Send/Recv over NVRAM

NRCIO RDMA_Read over NVRAM

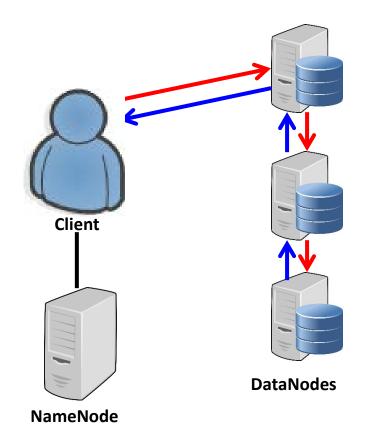

NRCIO Send/Recv Emulation over PCM

IB Send/Recv Emulation over PCM

- Comparison of communication latency using NRCIO send/receive semantics over InfiniBand QDR network and PCM memory
- High communication latencies due to slower writes to non-volatile persistent memory
 - NVRAM-to-Remote-NVRAM (NVRAM-NVRAM) => ~10x overhead vs. DRAM-DRAM
 - DRAM-to-Remote-NVRAM (DRAM-NVRAM) => ~8x overhead vs. DRAM-DRAM
 - DRAM-to-Remote-NVRAM (DRAM-NVRAM) => ~4x overhead vs. DRAM-DRAM

NRCIO RDMA-Read Emulation over PCM

Message Size (bytes) IB RDMA_READ Emulation over PCM

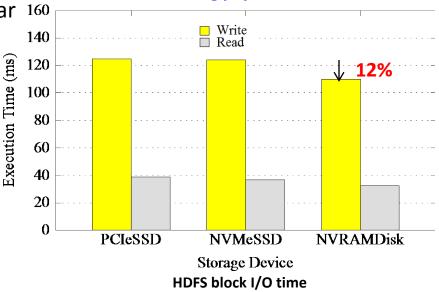

- Communication latency with NRCIO RDMA-Read over InfiniBand QDR + PCM memory
- Communication overheads for large messages due to slower writes into NVRAM from remote memory; similar to Send/Receive
- RDMA-Read outperforms Send/Receive for large messages; as observed for DRAM-DRAM

Presentation Outline

- Understanding NVRAM and RDMA
- NRCIO: NVM-aware RDMA-based Communication and I/O Schemes
- NRCIO for Big Data Analytics
- Conclusion and Q&A

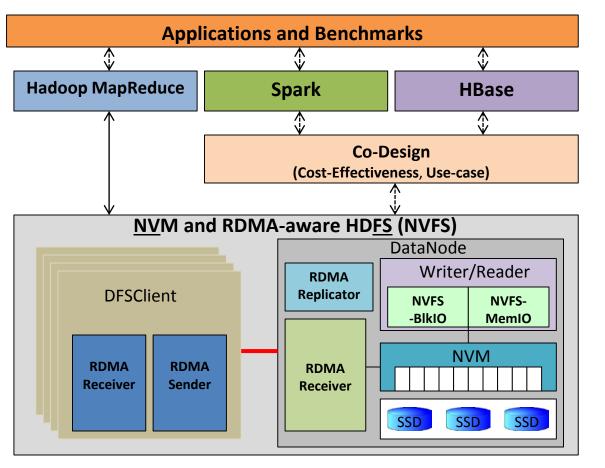
Opportunities of Using NVRAM+RDMA in HDFS

- Files are divided into fixed sized blocks
 - Blocks divided into packets
- NameNode: stores the file system namespace
- DataNode: stores data blocks in local storage devices
- Uses block replication for fault tolerance
 - Replication enhances data-locality and read throughput
- Communication and I/O intensive
- Java Sockets based communication
- Data needs to be persistent, typically on SSD/HDD



NVMW '17

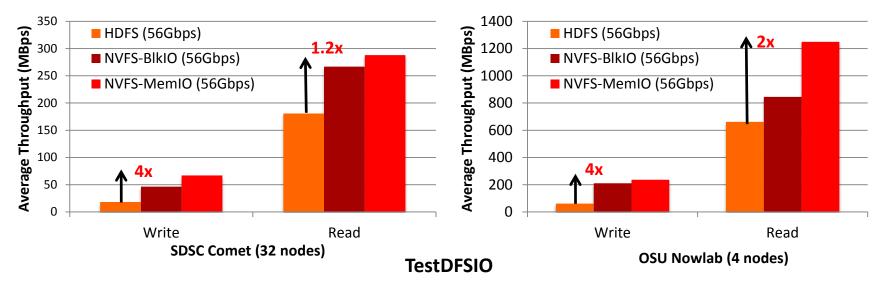
Can HDFS be benefited by fully exploiting the byteaddressability of NVM?


- In-memory storage in HDFS is becoming popular 10
 - Data persistence is challenging
- HDFS stores files in local storage
 - Competition for physical memory
- HPC clusters usually equipped with high performance interconnects and protocols (e.g. RDMA) and parallel file systems like Lustre
- NVM is also emerging and making its way into HPC systems
 - Non-volatile and byte-addressable

Requires re-assessment of the design choices for HDFS!

NVRAMDisk = RAMDisk backed by NVM

Design Overview of <u>NVM</u> and RDMA-aware HDFS (NVFS)



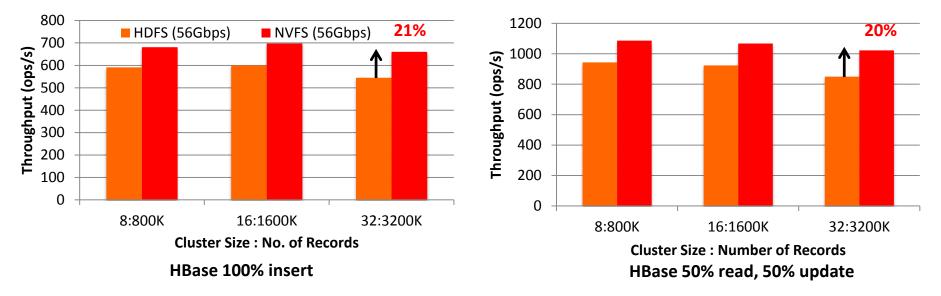
- Design Features
 - RDMA over NVM
 - HDFS I/O with NVM
 - Block Access
 - Memory Access
 - Hybrid design
 - NVM with SSD as a hybrid storage for HDFS I/O
 - Co-Design with Spark and HBase
 - Cost-effectiveness
 - Use-case

N. S. Islam, M. W. Rahman , X. Lu, and D. K. Panda, High Performance Design for HDFS with Byte-Addressability of NVM and RDMA, 24th International Conference on Supercomputing (ICS), June 2016

Network Based Computing Laboratory

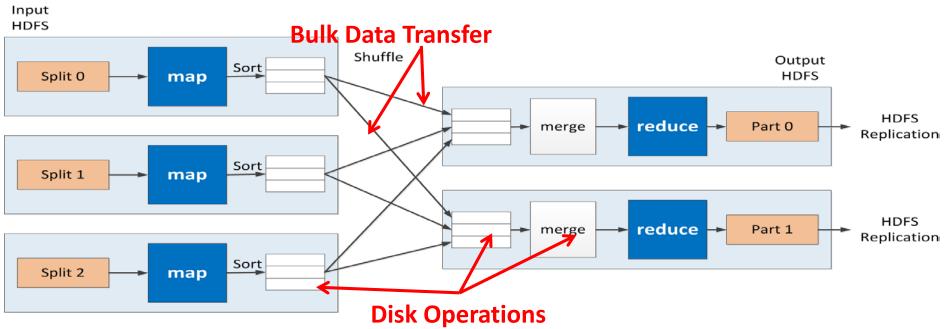
Evaluation with Hadoop MapReduce

- TestDFSIO on SDSC Comet (32 nodes)
 - Write: NVFS-MemIO gains by 4x over HDFS
 - Read: NVFS-MemIO gains by 1.2x over


- TestDFSIO on OSU Nowlab (4 nodes)
 - Write: NVFS-MemIO gains by 4x over HDFS
 - Read: NVFS-MemIO gains by 2x over HDFS

Network Based Computing Laboratory

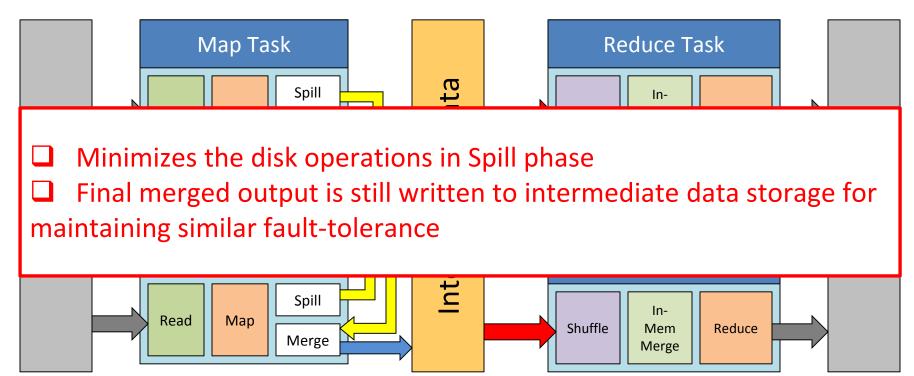
HDFS


NVMW '17

Evaluation with HBase

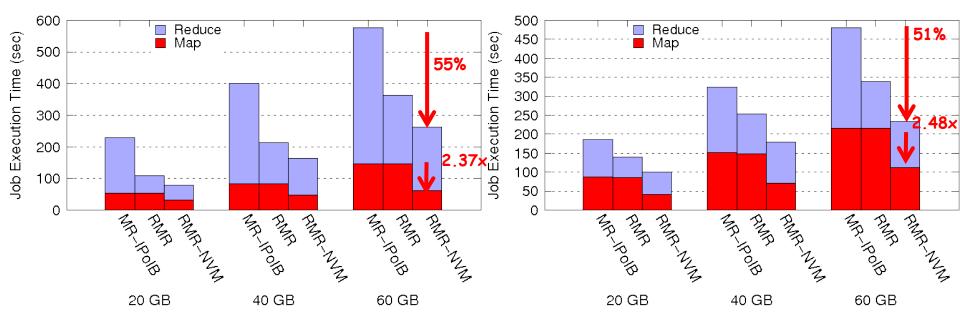
- YCSB 100% Insert on SDSC Comet (32 nodes)
 - NVFS-BlkIO gains by 21% by storing only WALs to NVM
- YCSB 50% Read, 50% Update on SDSC Comet (32 nodes)
 - NVFS-BlkIO gains by 20% by storing only WALs to NVM

Opportunities to Use NVRAM+RDMA in MapReduce


- Map and Reduce Tasks carry out the total job execution
 - Map tasks read from HDFS, operate on it, and write the intermediate data to local disk (persistent)
 - Reduce tasks get these data by shuffle from NodeManagers, operate on it and write to HDFS (persistent)
- Communication and I/O intensive; Shuffle phase uses HTTP over Java Sockets; I/O operations take place in SSD/HDD typically

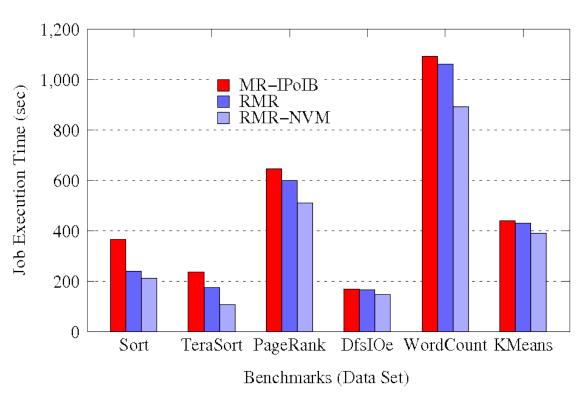
Network Based Computing Laboratory

Opportunities to Use NVRAM in MapReduce-RDMA Design

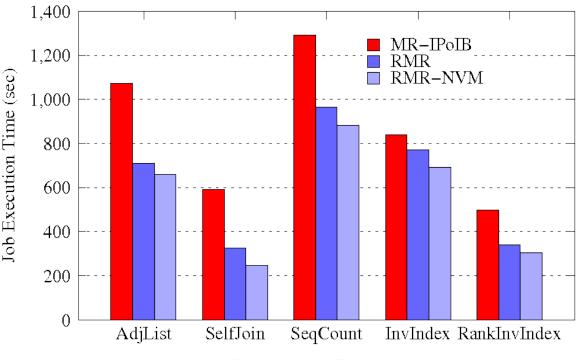


NVRAM-Assisted Map Spilling in MapReduce-RDMA

M. W. Rahman, N. S. Islam, X. Lu, and D. K. Panda, Can Non-Volatile Memory Benefit MapReduce Applications on HPC Clusters? PDSW-DISCS, with SC 2016.


Comparison with Sort and TeraSort

- RMR-NVM achieves 2.37x benefit for Map phase compared to RMR and MR-IPoIB; overall benefit 55% compared to MR-IPoIB, 28% compared to RMR
- RMR-NVM achieves 2.48x benefit for Map phase compared to RMR and MR-IPoIB; overall benefit 51% compared to MR-IPoIB, 31% compared to RMR


Evaluation of Intel HiBench Workloads

- We evaluate different HiBench workloads with Huge data sets on 8 nodes
- Performance benefits for Shuffle-intensive workloads compared to MR-IPoIB:
 - Sort: 42% (25 GB)
 - TeraSort: 39% (32 GB)
 - PageRank: 21% (5 million pages)
- Other workloads:
 - WordCount: 18% (25 GB)
 - KMeans: 11% (100 million samples)

Evaluation of PUMA Workloads

- We evaluate different PUMA workloads on 8 nodes with 30GB data size
- Performance benefits for Shuffle-intensive workloads compared to MR-IPoIB :
 - AdjList: 39%
 - SelfJoin: 58%
 - RankedInvIndex: 39%
- Other workloads:
 - SeqCount: 32%
 - InvIndex: 18%

Benchmarks (Data Size)

Presentation Outline

- Understanding NVRAM and RDMA
- NRCIO: NVM-aware RDMA-based Communication and I/O Schemes
- NRCIO for Big Data Analytics
- Conclusion and Q&A

Conclusion and Future Work

- Exploring NVM-aware RDMA-based Communication and I/O Schemes for Big Data Analytics
- Proposed a new library, NRCIO (work-in-progress)
- Re-design HDFS storage architecture with NVRAM
- Re-design RDMA-MapReduce with NVRAM
- Results are promising
- Further optimizations in NRCIO
- Co-design with more Big Data analytics frameworks

The 3rd International Workshop on High-Performance Big Data Computing (HPBDC)

HPBDC 2017 will be held with IEEE International Parallel and Distributed Processing Symposium (IPDPS 2017), Orlando, Florida USA, May, 2017

Keynote Speaker: Prof. Satoshi Matsuoka, Tokyo Institute of Technology, Japan

Panel Moderator: Prof. Jianfeng Zhan (ICT/CAS) Panel Topic: Sunrise or Sunset: Exploring the Design Space of Big Data Software Stack Panel Members (Confirmed so far): Prof. Geoffrey C. Fox (Indiana University Bloomington); Dr. Raghunath Nambiar (Cisco); Prof. D. K. Panda (The Ohio State University)

> Six Regular Research Papers and One Short Research Papers Session I: High-Performance Graph Processing Session II: Benchmarking and Performance Analysis

> > http://web.cse.ohio-state.edu/~luxi/hpbdc2017

Thank You!

{luxi, panda}@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~luxi

http://www.cse.ohio-state.edu/~panda

High-Performance Big Data

Network-Based Computing Laboratory <u>http://nowlab.cse.ohio-state.edu/</u> The High-Performance Big Data Project <u>http://hibd.cse.ohio-state.edu/</u>