
SSD-Assisted Designs for MPI Fault-Tolerance
and Accelerating Web 2.0

Dhabaleswar K. (DK) Panda
The Ohio State University

E-mail: panda@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda

Presentation at OFA Developer Workshop (2013)

by

http://www.cse.ohio-state.edu/%7Epanda

2

Introduction

OFA Developer Workshop (April '13)

84.5 97.43

764.18

1026.39

NFS HDD Production Parallel FS Single SSD*

Ba
nd

w
id

th

(M
B/

s)

* Fusion-iO ioDrive PCI-e SSD

• SSD technology is improving steadily

• Significant performance benefits with PCIe-based SSDs

Open Challenges

• How do SSDs change the landscape of designing Next
generation systems (scientific and enterprise)

• Can RDMA be utilized together with SSDs: Challenges and
Benefits?

3 OFA Developer Workshop (April '13)

• Use of SSDs to accelerate MPI Fault-Tolerance
– Accelerating checkpoint-restart and migration with hierarchical data-

staging and high-throughput SSDs

– Multi-Level checkpointing using SSDs with Scalable Checkpoint/Restart
(SCR)

• Use of SSDs to accelerate Web 2.0
– Using SSDs as a Virtual Memory Swap (existing naïve solution)

– Accelerating Memcached with a SSD-based Hybrid-Memory architecture

4

Experience in Using SSDs

OFA Developer Workshop (April '13)

Process-level Fault-Tolerance

• High probability of component failures in large-scale systems
• Long-running applications should continue to execute
• Broad approaches for process-level fault -tolerance

– Transparent checkpoint-restart
• Periodically store checkpoint (memory footprint of all processes)
• In case of failures, go back to the last checkpoint and restart

– Proactive migration
• Monitor nodes for failure symptoms
• With high-probability of impending failures , migrate the process to a spare

node and continue execution

– Applications-level fault-tolerance
• Applications periodically store the main results (at the end of an iteration)
• Restart application from results from a previous iteration in case of failure

5 OFA Developer Workshop (April '13)

• High Performance open-source MPI Library for InfiniBand, 10Gig/iWARP and
RDMA over Converged Enhanced Ethernet (RoCE)

– MVAPICH (MPI-1) ,MVAPICH2 (MPI-3.0), Available since 2002

– MVAPICH2-X (MPI + PGAS), Available since 2012

– Used by more than 2,000 organizations (HPC Centers, Industry and Universities) in
70 countries

– More than 165,000 downloads from OSU site directly

– Empowering many TOP500 clusters
• 7th ranked 204,900-core cluster (Stampede) at TACC

• 14th ranked 125,980-core cluster (Pleiades) at NASA

• 17th ranked 73,278-core cluster (Tsubame 2.0) at Tokyo Institute of Technology

• and many others

– Available with software stacks of many IB, HSE and server vendors
including Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

• Partner in the U.S. NSF-TACC Stampede (9 PFlop) System

6

Recap: MVAPICH2/MVAPICH2-X Software

OFA Developer Workshop (April '13)

http://mvapich.cse.ohio-state.edu/

Process-Level and Applications-Level Fault-Tolerance in
MVAPICH2

• Transparent Checkpoint-Restart
– Basic Checkpoint-Restart scheme

– Node-level Checkpoint write-aggregation scheme

• Proactive Process-Migration
– File-copy bases process snapshot migration

– RDMA-based pipelined process migration

• Applications-level Checkpointing with SCR

7 OFA Developer Workshop (April '13)

I/O Overheads with Checkpoint-Restart and Process-Migration

8 OFA Developer Workshop (April '13)

0

2000

4000

6000

8000

10000

12000

LU.C.64 BT.C.64 SP.C.64

Job Stall Job Migration Restart Resume

Phase 1: Suspend network activity
Phase 2: Write checkpoints
Phase 3: Resume network activity

• Checkpoint writing phase is the most time-consuming
• Restarting a job after file-copy based process migration is the most time-

consuming
• Both solutions can benefit from high-throughput write and read operations

of SSDs
 But SMARTER solutions are needed to leverage the inherent benefits of SSDs!

9

Hierarchical Data Staging Servers

OFA Developer Workshop (April '13)

• Compute nodes that are diskless/ with limited storage in terms of
space

• Dedicated I/O nodes with SSDs can be placed in-between that
orchestrate data transfer between compute nodes and parallel file
system

• A few such nodes per rack

Using Dedicated Staging Servers

10

• Checkpoint files are written to staging servers
• Application resumes as soon as the data is written to the
 staging server
• Checkpoint files are transferred in background to the
 back-end filesystem
• Computation and data transfer are overlapped
• Checkpoint files eventually reach the backend file systems

OFA Developer Workshop (April '13)

Scalability of Hierarchical Data Staging

11

• Each process writes 1 GB with a 1 MB record size
• Staging architecture scales as the staging groups are increased
• Achieved aggregated throughput: 1,834 MB/s
• Theoretical aggregated write throughput of all SSDs: 1,900 MB/s*

IO throughput with increasing number of staging servers (IOZone benchmark)

OFA Developer Workshop (April '13)

*OCZ RevoDrive PCI-e SSD

Evaluation with Applications (NAS Benchmarks)

12

• Background transfer time is lesser than direct checkpointing
time due to reduced contention on the Parallel filesystem

• Checkpointing time, as seen by the application, is 8.3 times
lesser with the staging approach

R. Rajachandrasekar, X. Ouyang, X. Besseron, V. Meshram and D. K. Panda, Can Checkpoint/Restart
Mechanisms Benefit from Hierarchical Data Staging? Workshop on Resiliency in High Performance Computing
in Clusters, Clouds, and Grids (Resilience '11)

OFA Developer Workshop (April '13)

Presenter
Presentation Notes
How is write time to parallel filesystem diff for same amount of data ?

Background transfer time(blue bar) is lesser than direct checkpointing time(yellow bar) due to
reduced contention and multiplexing at the Lustre filesystem, with fewer processes writing at once.

OFA Developer Workshop (April '13) 13

QoS-Aware Data Staging

R. Rajachandrasekar, J. Jaswani, H. Subramoni and D. K. Panda, Minimizing Network Contention in InfiniBand Clusters
with a QoS-Aware Data-Staging Framework, IEEE Cluster, Sept. 2012

• Asynchronous I/O introduces contention for network-resources
• How should data be orchestrated in a data-staging architecture to eliminate such contention?
• Can the QoS capabilities provided by cutting-edge interconnect technologies be leveraged by
parallel filesystems to minimize network contention?

• Reduces runtime overhead from 17.9% to 8% and from 32.8% to 9.31%, in case of AWP and NAS-CG
applications respectively

MPI Message Latency

MPI Message Bandwidth

8%
17.9%

0.9
0.95

1
1.05

1.1
1.15

1.2

default with I/O
noise

I/O noise
isolated

Anelastic Wave Propagation
(64 MPI processes)

Normalized Runtime

32.8% 9.31%

0.9
1

1.1
1.2
1.3
1.4

default with I/O
noise

I/O noise
isolated

NAS Parallel Benchmark
Conjugate Gradient Class D

(64 MPI processes)

Normalized Runtime

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

• Use of SSDs to accelerate MPI Fault-Tolerance
– Accelerating checkpoint-restart and migration with hierarchical data-

staging and high-throughput SSDs

– Multi-Level checkpointing using SSDs with Scalable Checkpoint/Restart
(SCR)

• Use of SSDs to accelerate Web 2.0
– Using SSDs as a Virtual Memory Swap (existing naïve solution)

– Accelerating Memcached with a SSD-based Hybrid-Memory architecture

14

Experience in Using SSDs

OFA Developer Workshop (April '13)

Multi-Level Checkpointing with ScalableCR (SCR)

15 OFA Developer Workshop (April '13)

Cluster C

Gateway Nodes

Compute Nodes

Network Contention

Contention for Shared File
System Resources

Contention from Other Clusters
for File System

• Periodically saving application data to persistent storage

• Application- / System-level checkpointing mechanisms

• I/O intensive operation – bottleneck in the application

• Effective utilization of storage hierarchy is indispensable!

• LLNL’s Scalable Checkpoint/Restart library – novel solution!

Multi-Level Checkpointing with ScalableCR (SCR)

16 OFA Developer Workshop (April '13)

Local: Store checkpoint data on node’s
local storage, e.g. SSDs, ramdisk

Partner: Write to local SSD and on a
partner node

XOR: Write file to local SSD and small sets
of nodes collectively compute and store
parity redundancy data (RAID-5)

Stable Storage: Write to parallel file
system

⊕

Ch
ec

kp
oi

nt
 C

os
t a

nd
 R

es
ili

en
cy

Low

High

Application-guided Multi-Level Checkpointing

17 OFA Developer Workshop (April '13)

void checkpoint() {
 SCR_Start_checkpoint();

 int rank;
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 char file[256];
 sprintf(file, “rank_%d.ckpt”, rank);

 char scr_file[SCR_MAX_FILENAME];
 SCR_Route_file(file, scr_file);
 FILE* fs = fopen(scr_file, “w”);
 if (fs != NULL) {
 fwrite(state, ..., fs);
 fclose(fs);
 }

 SCR_Complete_checkpoint(1);
 return;
}

…

SCR_Start_checkpt();
SCR_Route_file(fn,fn2);
…
fwrite(data,…);
…
SCR_Complete_checkpt();

SCR_Start_checkpt();
SCR_Route_file(fn,fn2);
…
fwrite(data,…);
…
SCR_Complete_checkpt();

2

SCR_Start_checkpt();
SCR_Route_file(fn,fn2);
…
fwrite(data,…);
…
SCR_Complete_checkpt();

2

SCR_Start_checkpt();
SCR_Route_file(fn,fn2);
…
fwrite(data,…);
…
SCR_Complete_checkpt();

2
2 2 2

1
1

1
1

• First write checkpoints to node-
local storage
• When checkpoint is complete,
apply redundancy schemes

• Users select which checkpoints are
transferred to global storage
• Automatically drain last checkpoint
of the job

SCR Support in MVAPICH2

• Introduced in 1.9 (since 1.9b)

• Supports both
– Systems-level transparent checkpointing

– Applications-level checkpointing

18 OFA Developer Workshop (April '13)

Application-guided Multi-Level Checkpointing

19 OFA Developer Workshop (April '13)

0

20

40

60

80

100

PFS MVAPICH2+SCR
(Local)

MVAPICH2+SCR
(Partner)

MVAPICH2+SCR
(XOR)

Ch
ec

kp
oi

nt
 W

rit
in

g
Ti

m
e

(s
)

Representative SCR-Enabled Application

• Checkpoint writing phase times of representative SCR-enabled MPI
application

• 512 MPI processes (8 procs/node)
• Approx. 51 GB aggregate checkpoints

Transparent Multi-Level Checkpointing

20 OFA Developer Workshop (April '13)

0

2000

4000

6000

8000

10000

MVAPICH2-CR (PFS) MVAPICH2+SCR (Multi-Level)

Ch
ec

kp
oi

nt
in

g
Ti

m
e

(m
s)

Suspend N/W Reactivate N/W Write Checkpoint

• ENZO Cosmology application – Radiation Transport workload

• Using MVAPICH2’s CR protocol instead of the application’s in-built CR
mechanism

• 512 MPI processes (8 procs/node)

• Approx. 12.8 GB aggregate checkpoints

• Use of SSDs to accelerate MPI Fault-Tolerance
– Accelerating checkpoint-restart and migration with hierarchical data-

staging and high-throughput SSDs

– Multi-Level checkpointing using SSDs with Scalable Checkpoint/Restart
(SCR)

• Use of SSDs to accelerate Web 2.0
– Using SSDs as a Virtual Memory Swap (existing naïve solution)

– Accelerating Memcached with a SSD-based Hybrid-Memory architecture

21

Experience in Using SSDs

OFA Developer Workshop (April '13)

Enhancing Memcached Server with Hybrid Memory

22

• Many applications cache large
amount of data in RAM for high
performance

• Memcached is a distributed-memory
object-caching system

• Memcached performance directly
depends on aggregated memory pool
size

• Difficult to scale memory pool size
– Hardware cost
– Power/thermal concern
– Floor plan limits

• Existing solution: mmap() an SSD into
virtual memory system

– Significant overhead

OFA Developer Workshop (April '13)

• In-kernel VM Management System manipulates SSD at
page granularity

• Entire flash page has to be loaded/overwritten even for a
single byte read/update

• Excessive read/write traffic undermines SSD lifespan

• Heavy software stack overhead inside the kernel

Drawback of Existing Virtual Memory Subsystem

23 OFA Developer Workshop (April '13)

SSD Used as Virtual Memory Swap Device

• Memcached Get Latency at 1KB Object Size:
– 10 us from IB-RAM

– 347 us from IB-VirtualMem (SSD-Mapped VM)

– 68 us from SSD random read

Performance loss due to overhead in VM Management

0

50

100

150

200

250

300

350

400

IB-RAM IB-VitrualMem SSD-READ

Av
er

ag
e

La
te

nc
y

(u
s)

RAM access SSD access

Performance loss due to
overhead in VM management

24 OFA Developer Workshop (April '13)

SSD Used as Virtual Memory Swap Device

IB Verbs IPoIB 10GigE 1GigE

MySQL N/A 10763 10724 11220

Memcached
(In RAM)

10 60 40 150

Memcached
(Naïve mmap

from SSD)

347 387 362 455

Random Read Random Write

Latency 68 70

Get Latency (us)

SSD Basic Performance (us) (PCI-e SSD)

25 OFA Developer Workshop (April '13)

SSD-Assisted Hybrid Memory

• Hybrid memory works as an object cache

• Manages resource allocation at object granularity
– More efficient than allocation at page granularity

• Low latency object access due to SSD fast random read
property

• Batched write to amortize writing cost

• Append-only write model to avoid in-place update to SSD
– SSD is treated as a log-structured sequences of blocks

26 OFA Developer Workshop (April '13)

Microbenchmark: Raw Performance

Read/Write Volume to SSD

• 30GB data in SSD, 256 MB read/write buffer
• 1KB object size

15.3 X
Reduced by
97%

Reduced by
81%

• Read is reduced by 97%
• Write is reduced by 81% => 5.3X longer lifespan

27 OFA Developer Workshop (April '13)

Operation Throughput

X. Ouyang, N. Islam, R. Rajachandrasekar, J. Jose, M. Luo, H. Wang and D. K. Panda, SSD-Assisted Hybrid Memory to
Accelerate Memcached over High Performance Networks, Int'l Conference on Parallel Processing (ICPP '12), September 2012.

Memcached: Operation Latency

• Memcached-1.4.5 with InfiniBand DDR
• 30GB data in SSD, 256 MB read/write buffer
• Get / Put a random object

3.6 X

347 us

93 us 16 us

48 us

3 X

28 OFA Developer Workshop (April '13)

Memcached Get Latency Memcached Put Latency

Memcached: Get Throughput

• Memcached-1.4.5 with InfiniBand DDR
• 30GB data in SSD, object size = 1KB, 256 MB read/write buffer
• 1,2,4,8 client process to perform random get()

Improve by 5.3 X

29 OFA Developer Workshop (April '13)

• SSD technology is emerging

• Special performance benefits with PCIe-based SSDs

• Presented some case studies to take benefits of SSDs for
scientific and enterprise environments

• Provides new opportunities to be used in designing next
generation HPC systems

OFA Developer Workshop, April '13

Concluding Remarks

30

	SSD-Assisted Designs for MPI Fault-Tolerance�and Accelerating Web 2.0
	Introduction
	Open Challenges
	Experience in Using SSDs
	Process-level Fault-Tolerance
	Recap: MVAPICH2/MVAPICH2-X Software
	Process-Level and Applications-Level Fault-Tolerance in MVAPICH2
	I/O Overheads with Checkpoint-Restart and Process-Migration
	Hierarchical Data Staging Servers
	Using Dedicated Staging Servers
	Scalability of Hierarchical Data Staging
	Evaluation with Applications (NAS Benchmarks)
	QoS-Aware Data Staging
	Experience in Using SSDs
	Multi-Level Checkpointing with ScalableCR (SCR)
	Multi-Level Checkpointing with ScalableCR (SCR)
	Application-guided Multi-Level Checkpointing
	SCR Support in MVAPICH2
	Application-guided Multi-Level Checkpointing
	Transparent Multi-Level Checkpointing
	Experience in Using SSDs
	Enhancing Memcached Server with Hybrid Memory
	Drawback of Existing Virtual Memory Subsystem
	SSD Used as Virtual Memory Swap Device
	SSD Used as Virtual Memory Swap Device
	SSD-Assisted Hybrid Memory
	Microbenchmark: Raw Performance
	Memcached: Operation Latency
	Memcached: Get Throughput
	Concluding Remarks

