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Introduction 
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• SSD technology is improving steadily 

• Significant performance benefits with PCIe-based SSDs  



Open Challenges 

• How do SSDs change the landscape of designing Next 
generation systems (scientific and enterprise) 

• Can RDMA be utilized together with SSDs: Challenges and 
Benefits? 
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• Use of SSDs to accelerate MPI Fault-Tolerance 
– Accelerating checkpoint-restart and migration with hierarchical data-

staging and high-throughput SSDs 

– Multi-Level checkpointing using SSDs with Scalable Checkpoint/Restart 
(SCR) 

• Use of SSDs to accelerate Web 2.0 
– Using SSDs as a Virtual Memory Swap (existing naïve solution) 

– Accelerating Memcached with a SSD-based Hybrid-Memory architecture 
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Experience in Using SSDs 
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Process-level Fault-Tolerance 

• High probability of component failures in large-scale systems 
• Long-running applications should continue to execute 
• Broad approaches for process-level fault -tolerance 

– Transparent checkpoint-restart 
• Periodically store checkpoint (memory footprint of all processes) 
• In case of failures, go back to the last checkpoint and restart 

– Proactive migration 
• Monitor nodes for failure symptoms 
• With high-probability of  impending failures , migrate the process to a spare 

node and continue execution  

– Applications-level fault-tolerance 
• Applications periodically  store the main results (at the end of an iteration) 
• Restart  application from  results from a previous iteration in case of failure 
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• High Performance open-source MPI Library for InfiniBand, 10Gig/iWARP and 
RDMA over Converged Enhanced Ethernet (RoCE) 

– MVAPICH (MPI-1) ,MVAPICH2 (MPI-3.0), Available since 2002 

– MVAPICH2-X (MPI + PGAS), Available since 2012 

– Used by more than  2,000 organizations  (HPC Centers, Industry and Universities) in 
70 countries 

– More than 165,000 downloads from OSU site directly 

– Empowering many TOP500 clusters 
• 7th ranked 204,900-core cluster (Stampede) at  TACC 

• 14th ranked 125,980-core cluster (Pleiades) at NASA 

• 17th ranked 73,278-core cluster (Tsubame 2.0) at Tokyo Institute of Technology 

• and  many others 

– Available with software stacks of many IB, HSE and server vendors 
including Linux Distros (RedHat and SuSE) 

– http://mvapich.cse.ohio-state.edu 

• Partner in the U.S. NSF-TACC Stampede (9 PFlop) System 
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Recap: MVAPICH2/MVAPICH2-X Software 
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Process-Level and Applications-Level Fault-Tolerance in 
MVAPICH2 

• Transparent Checkpoint-Restart 
– Basic Checkpoint-Restart scheme 

– Node-level Checkpoint write-aggregation scheme 

• Proactive Process-Migration 
– File-copy bases process snapshot migration 

– RDMA-based pipelined process migration 

• Applications-level Checkpointing with SCR 
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I/O Overheads with Checkpoint-Restart and Process-Migration 
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Phase 1: Suspend network activity 
Phase 2: Write checkpoints 
Phase 3: Resume network activity 

• Checkpoint writing phase is the most time-consuming 
• Restarting a job after file-copy based process migration is the most time-

consuming 
• Both solutions can benefit from  high-throughput write and read operations 

of SSDs 
 But SMARTER solutions are needed to leverage the inherent benefits of SSDs! 
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Hierarchical Data Staging Servers 

OFA Developer Workshop (April '13) 

• Compute nodes that are diskless/ with limited storage in terms of 
space 

• Dedicated I/O nodes with SSDs can be placed in-between that 
orchestrate data transfer between compute nodes and parallel file 
system 

• A few such nodes per rack 



Using Dedicated Staging Servers 
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• Checkpoint files are written to staging servers 
• Application resumes as soon as the data is written to the 
   staging server 
• Checkpoint files are transferred in background to the  
   back-end filesystem 
• Computation and data transfer are overlapped 
• Checkpoint files eventually reach the backend file systems 
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Scalability of Hierarchical Data Staging 
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• Each process writes 1 GB with a 1 MB record size 
• Staging architecture scales as the staging groups are increased 
• Achieved aggregated throughput: 1,834 MB/s 
• Theoretical aggregated write throughput of all SSDs: 1,900 MB/s* 

IO throughput with increasing number of staging servers (IOZone benchmark) 
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*OCZ RevoDrive PCI-e SSD 



Evaluation with Applications (NAS Benchmarks) 
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• Background transfer time is lesser than direct checkpointing 
time due to reduced contention on the Parallel filesystem 

• Checkpointing time, as seen by the application, is 8.3 times 
lesser with the staging approach 

R. Rajachandrasekar, X. Ouyang, X. Besseron, V. Meshram and D. K. Panda, Can Checkpoint/Restart 
Mechanisms Benefit from Hierarchical Data Staging? Workshop on Resiliency in High Performance Computing 
in Clusters, Clouds, and Grids (Resilience '11)  
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Presenter
Presentation Notes
How is write time to parallel filesystem diff for same amount of data ?

Background transfer time(blue bar) is lesser than direct checkpointing time(yellow bar) due to
reduced contention and multiplexing at the Lustre filesystem, with fewer processes writing at once.
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QoS-Aware Data Staging 

R. Rajachandrasekar, J. Jaswani, H. Subramoni and D. K. Panda, Minimizing Network Contention in InfiniBand Clusters 
with a QoS-Aware Data-Staging Framework, IEEE Cluster, Sept. 2012 

• Asynchronous I/O introduces contention for network-resources 
• How should data be orchestrated in a  data-staging architecture to eliminate such contention?  
• Can the QoS capabilities provided by cutting-edge interconnect technologies be leveraged by 
parallel filesystems to minimize network contention? 

•  Reduces runtime overhead from 17.9% to 8% and from 32.8% to 9.31%, in case of AWP and NAS-CG 
applications respectively 
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• Use of SSDs to accelerate MPI Fault-Tolerance 
– Accelerating checkpoint-restart and migration with hierarchical data-

staging and high-throughput SSDs 

– Multi-Level checkpointing using SSDs with Scalable Checkpoint/Restart 
(SCR) 

• Use of SSDs to accelerate Web 2.0 
– Using SSDs as a Virtual Memory Swap (existing naïve solution) 

– Accelerating Memcached with a SSD-based Hybrid-Memory architecture 
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Experience in Using SSDs 
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Multi-Level Checkpointing with ScalableCR (SCR) 
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Cluster C 

Gateway Nodes 

Compute Nodes 

Network Contention 

Contention for Shared File 
System Resources 

Contention from Other Clusters 
for File System 

• Periodically saving application data to persistent storage 

• Application- / System-level checkpointing mechanisms 

• I/O intensive operation – bottleneck in the application 

• Effective utilization of storage hierarchy is indispensable! 

• LLNL’s Scalable Checkpoint/Restart library – novel solution! 



Multi-Level Checkpointing with ScalableCR (SCR) 
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Local: Store checkpoint data on node’s 
local storage, e.g. SSDs, ramdisk  

Partner: Write to local SSD and on a 
partner node 

XOR: Write file to local SSD and small sets 
of nodes collectively compute and store 
parity redundancy data (RAID-5) 

Stable Storage: Write to parallel file 
system 
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Application-guided Multi-Level Checkpointing 
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void checkpoint() { 
  SCR_Start_checkpoint(); 
 
  int rank; 
  MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
 
  char file[256]; 
  sprintf(file, “rank_%d.ckpt”, rank); 
 
  char scr_file[SCR_MAX_FILENAME]; 
  SCR_Route_file(file, scr_file); 
  FILE* fs = fopen(scr_file, “w”); 
  if (fs != NULL) { 
    fwrite(state, ..., fs); 
    fclose(fs); 
  } 
 
  SCR_Complete_checkpoint(1); 
  return; 
} 

… 

SCR_Start_checkpt(); 
SCR_Route_file(fn,fn2); 
… 
fwrite(data,…); 
… 
SCR_Complete_checkpt(); 

SCR_Start_checkpt(); 
SCR_Route_file(fn,fn2); 
… 
fwrite(data,…); 
… 
SCR_Complete_checkpt(); 

2 

SCR_Start_checkpt(); 
SCR_Route_file(fn,fn2); 
… 
fwrite(data,…); 
… 
SCR_Complete_checkpt(); 

2 

SCR_Start_checkpt(); 
SCR_Route_file(fn,fn2); 
… 
fwrite(data,…); 
… 
SCR_Complete_checkpt(); 
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• First write checkpoints to node-
local storage 
• When checkpoint is complete, 
apply redundancy schemes 

• Users select which checkpoints are 
transferred to global storage 
• Automatically drain last checkpoint 
of the job 



SCR Support in MVAPICH2 

• Introduced in 1.9 (since 1.9b) 

• Supports both  
– Systems-level transparent checkpointing  

– Applications-level checkpointing 
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Application-guided Multi-Level Checkpointing 
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Representative SCR-Enabled Application 

• Checkpoint writing phase times of representative SCR-enabled MPI 
application  

• 512 MPI processes (8 procs/node) 
• Approx. 51 GB aggregate checkpoints 



Transparent Multi-Level Checkpointing 
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Suspend N/W Reactivate N/W Write Checkpoint

• ENZO Cosmology application – Radiation Transport workload 

• Using MVAPICH2’s CR protocol instead of the application’s in-built CR 
mechanism 

• 512 MPI processes (8 procs/node) 

• Approx. 12.8 GB aggregate checkpoints 



• Use of SSDs to accelerate MPI Fault-Tolerance 
– Accelerating checkpoint-restart and migration with hierarchical data-

staging and high-throughput SSDs 

– Multi-Level checkpointing using SSDs with Scalable Checkpoint/Restart 
(SCR) 

• Use of SSDs to accelerate Web 2.0 
– Using SSDs as a Virtual Memory Swap (existing naïve solution) 

– Accelerating Memcached with a SSD-based Hybrid-Memory architecture 
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Experience in Using SSDs 
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Enhancing Memcached Server with Hybrid Memory 
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• Many applications cache large 
amount of data in RAM for high 
performance 

• Memcached is a distributed-memory 
object-caching system 

• Memcached performance directly 
depends on aggregated memory pool 
size 

• Difficult to scale memory pool size 
– Hardware cost 
– Power/thermal concern 
– Floor plan limits 

• Existing solution: mmap() an SSD into 
virtual memory system 

– Significant overhead 
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• In-kernel VM Management System manipulates SSD at 
page granularity 

• Entire flash page has to be loaded/overwritten even for a 
single byte read/update 

• Excessive read/write traffic undermines SSD lifespan 

• Heavy software stack overhead inside the kernel 

 

Drawback of Existing Virtual Memory Subsystem 
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SSD Used as Virtual Memory Swap Device 

• Memcached Get Latency at 1KB Object Size: 
– 10 us from IB-RAM 

– 347 us from IB-VirtualMem (SSD-Mapped VM) 

– 68 us  from SSD random read 

Performance loss due to overhead in VM Management 
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Performance loss due to  
overhead in VM management 
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SSD Used as Virtual Memory Swap Device 

IB Verbs IPoIB 10GigE 1GigE 

MySQL N/A 10763 10724 11220 

Memcached 
(In RAM) 

10 60 40 150 

Memcached 
(Naïve mmap 

from SSD) 

347 387 362 455 

Random Read Random Write 

Latency 68 70 

Get Latency (us) 

SSD Basic Performance (us) (PCI-e SSD) 
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SSD-Assisted Hybrid Memory 

• Hybrid memory works as an object cache 

• Manages resource allocation at object granularity 
– More efficient than allocation at page granularity 

• Low latency object access due to SSD fast random read 
property 

• Batched write to amortize writing cost 

• Append-only write model to avoid in-place update to SSD 
– SSD is treated as a log-structured sequences of blocks 
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Microbenchmark: Raw Performance 

Read/Write Volume to SSD 

• 30GB data in SSD,  256 MB read/write buffer 
• 1KB object size 

15.3 X 
Reduced by  
97% 

Reduced by  
81% 

• Read is reduced by 97% 
• Write is reduced by 81% => 5.3X longer lifespan 
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Operation Throughput 

X. Ouyang, N. Islam, R. Rajachandrasekar, J. Jose, M. Luo, H. Wang and D. K. Panda, SSD-Assisted Hybrid Memory to 
Accelerate Memcached over High Performance Networks, Int'l Conference on Parallel Processing (ICPP '12), September 2012. 



Memcached:  Operation Latency 

• Memcached-1.4.5 with InfiniBand DDR 
• 30GB data in SSD,  256 MB read/write buffer 
• Get / Put a random object 

3.6 X 

347 us 

93 us 16 us 

48 us 

3 X 

28 OFA Developer Workshop (April '13) 

Memcached Get Latency Memcached Put Latency 



Memcached:  Get Throughput 

• Memcached-1.4.5 with InfiniBand DDR 
• 30GB data in SSD,  object size = 1KB, 256 MB read/write buffer 
• 1,2,4,8 client process to perform random get()  

Improve by 5.3 X 
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• SSD technology is emerging 

• Special performance benefits with PCIe-based SSDs  

• Presented some case studies to take benefits of SSDs for 
scientific and enterprise environments 

• Provides new opportunities to be used in designing next 
generation HPC systems 

 

OFA Developer Workshop, April '13 

Concluding Remarks 
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