
Architecture and Usages of

Accelio

2014 OFA Developer Workshop
Sunday, March 30 - Wednesday, April 2, 2014

Monterey CA

Eyal Salomon

Mellanox Technologies

What is Accelio in a Nutshell

High-performance, Transport independent, Simple to use
Reliable Messaging and RPC Library for Accelerating
applications

• Support User space, Kernel, C/C++, Java, Python (Future) bindings

• Optimal usage of CPU and Network hardware resources

• Built in fault-tolerance, transaction reliability, and load-balancing

• Integrated into OpenSource (e.g. HDFS, Ceph), and
Commercial Storage/DB products in-order to accelerate
its transport with minimal development/integration effort

• OpenSource Community project from the ground up:
– Site: http://accelio.org

– Code in: http://github.com/accelio

– Project/Bug tracking: http://launchpad.net/accelio

March 30 – April 2, 2014 2014 OFA Developer workshop 2

http://accelio.org/
http://github.com/accelio
http://launchpad.net/accelio

Accelio Goal

• Goal: Provide an easy to use, reliable, scalable, and high performance
data/message delivery middleware that maximize efficiency of modern CPU
and NIC hardware

• Key features:
– Focus on high-performance asynchronous APIs

– Reliable message delivery (end to end)

– Request/Response (Transaction) or Send/Receive models

– Provide connection and resource abstraction to max scalability and availability

– Maximize multi-threaded application performance with dedicated HW resources
per thread

– Designed to maximize the benefits of RDMA, hardware offloads, and Multi-core
CPUs

– Will support multiple transport options (RDMA, TCP, ..)

– Native support for service and storage clustering/scale-out

– Small message combining

– Simple and abstract API

March 30 – April 2, 2014 2014 OFA Developer workshop 3

Accelio Architecture

March 30 – April 2, 2014 2014 OFA Developer workshop 4

Use multiple connections per session:
- maximize CPU core

usage/parallelism
- High-availability & Migration
- Scale network bandwidth

Pluggable Transports:
- Code once for multiple HW options
- Seamlessly use RDMA

Abstract, Easy to use API

High Level Transaction Flow

March 30 – April 2, 2014 2014 OFA Developer workshop 5

Accelio Example - Hello Client

March 30 – April 2, 2014 2014 OFA Developer workshop 6

int main(int argc, char *argv[])

{

struct …

/* open one thread context set the polling timeout */

ctx = xio_context_create(NULL, 0);

/* create a session and connect to server */

session = xio_session_create(XIO_SESSION_CLIENT, &attr, url, 0, 0,

 &session_data);

session_data.conn = xio_connect(session, ctx, 0, NULL, &session_data);

…

xio_send_request(session_data.conn, session_data.req);

/* run the default xio main loop */

xio_context_run_loop(ctx, XIO_INFINITE);

/* normal exit phase */

xio_context_destroy(ctx);

return 0;

}

Accelio Example - Hello Client

March 30 – April 2, 2014 #OFADevWorkshop 7

int on_session_event(struct xio_session *session, struct xio_session_event_data *event_data,

 void *cb_user_context)

{

 switch (event_data->event) {

 case XIO_SESSION_CONNECTION_TEARDOWN_EVENT:

 xio_connection_destroy(event_data->conn);

 break;

 case XIO_SESSION_TEARDOWN_EVENT:

 xio_session_destroy(session);

 break;

 }

 return 0;

}

int on_response(struct xio_session *session, struct xio_msg *rsp, int more_in_batch,

 void *cb_prv_data)

{

struct …

process_response(rsp); /* process the incoming message, send a new one */

xio_release_response(rsp); /* acknowledge xio that response resources can be recycled */

…

xio_send_request(session_data.conn, session_data.req);

return 0;

}

Accelio Example - Hello Server

March 30 – April 2, 2014 2014 OFA Developer workshop 8

int main(int argc, char *argv[])

{

struct …

/* create thread context for the server */

ctx = xio_context_create(NULL, 0);

/* bind a listener server to a portal/url */

server = xio_bind(ctx, &server_ops, url, NULL, 0, &server_data);

xio_context_run_loop(ctx, XIO_INFINITE);

/* normal exit phase */

xio_unbind(server);

xio_context_destroy(ctx);

return 0;

}

Accelio Example - Hello Server

March 30 – April 2, 2014 #OFADevWorkshop 9

static int on_new_session(struct xio_session *session, struct xio_new_session_req

 *req, void *cb_prv_data)

{

 /* accept new connection request */

 xio_accept(session, NULL, 0, NULL, 0);

 return 0;

}

static int on_new_request(struct xio_session *session, struct xio_msg *req, int more_in_batch,

 void *cb_prv_data)

{

struct …

/* process request and send a response */

process_request(req);

/* attach the original request to response and send it */

response->request = req;

xio_send_response(response);

return 0;

}

Accelio Integration With

Other Applications/Projects

• Accelio is adopted as the high-performance, low-latency,
Reliable Messaging/RPC library for variety Open-Source
and Commercial products, customer projects

• Support multiple bindings (Kernel C, User Space C/C++,
Java, Python (future))

 March 30 – April 2, 2014 2014 OFA Developer workshop 10

Use case 1: XNBD

Accelio based network block device
• Multi-queue implementation in the block layer for high performance

• Utilizes Accelio’s facilities and features:
– Hardware acceleration for RDMA

– Zero data copy

– Lockless design

– Optimal CPU usage

– Reliable message delivery

• IO operation translation to libaio submit operations to remote device.

• OpenSource Community project from the ground up:
– Code in: http://github.com/accelio/xnbd

• Prerequisites:
– Accelio 1.1 version and above.

– Kernel version 3.13.1 and above.

March 30 – April 2, 2014 2014 OFA Developer workshop 11

http://github.com/accelio/xnbd

Use case 2: R-AIO Remote File

Access Application Example

March 30 – April 2, 2014 2014 OFA Developer workshop 12

• Provide access to a remote file system by redirecting libaio (async file IO)

commands to a remote server (which will issue the IO and return the results

to the client)

• Deliver extraordinary performance to remote ram file (/dev/ram)

• Using 4 CPUs & HW QPs for parallelism

• Similar performance to local ram file access (i.e. minimal degradation due

to communication)

Use case 3: JXIO

March 30 – April 2, 2014 2014 OFA Developer workshop 13

JXIO provides the first RDMA API in JAVA

 JXIO is a Java wrapper of Accelio library

 Open source project: https://github.com/accelio/JXIO

 Preserves Accelio’s zero copy and performance all the way

 Every C struct in Accelio is represented by a matching Java

class

 Provides 1.5M transactions per second (in Java)

 Reliable message delivery

 Low memory footprint

 Essential component in Mellanox’s HDFS RDMA acceleration

solution

https://github.com/accelio/JXIO
https://github.com/accelio/JXIO

Test Configuration

• Server

– HP ProLiant DL380p Gen8

– 2 x Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00GHz

– 64 GB Memory

• Adapters

– ConnectX3-Pro VPI (IB FDR or 40GbE)

– ConnectIB 16x PCIe

– OFED 2.1

• OS

– RedHat EL 6.4

– Kernel: 2.6.32-358.el6.x86_64

• Test

– Accelio I/O test utility in C, User space

– Request/Responce transactions (RPC)

– Over 1 or 2 ports, using auto

load balancing based on threads

March 30 – April 2, 2014 #OFADevWorkshop 14

Bandwidth Results

March 30 – April 2, 2014 #OFADevWorkshop 15

~ 12GB/s with
Connect-IB

Transaction Per Second (IOP/s)

Results

March 30 – April 2, 2014 #OFADevWorkshop 16

1 I/O Thread

(use single port)

Hit Max

Bandwidth

8 I/O Threads

> 9M TP/s with
Connect-IB

Round Trip Latency (Request & Response)

Results

March 30 – April 2, 2014 #OFADevWorkshop 17

Less than 3us in 1KB
Messages

Hit Max

Bandwidth 8 I/O Threads

1 I/O Thread

Latency Under Maximum Load (Millions of

Messages/Sec)

March 30 – April 2, 2014 #OFADevWorkshop 18

30us @ 1.8M
Messages/Sec

Hit Max Bandwidth
(Link become

congested)

1 I/O Thread

(use single

port)

44us @ ~9M
Messages/Sec

With Connect-IB

8 I/O Threads

Open source project

 Initiated by Mellanox

 Partnership

 Companies and Individuals are welcome to join the

project and contribute

 Web site: http://accelio.org

 Code in: http://github.com/accelio

 Project/Bug tracking: http://launchpad.net/accelio

 Email: info@accelio.org

 License: Dual BSD/GPLv2

March 30 – April 2, 2014 #OFADevWorkshop 19

http://accelio.org/
http://accelio.org/
http://github.com/accelio
http://github.com/accelio
http://launchpad.net/accelio
http://launchpad.net/accelio
mailto:info@accelio.org

#OFADevWorkshop

Thank You

