Exploring Linux NFS/RDMA

Shirley Ma and Chuck Lever, Oracle
The following is intended for information purposes, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions.
Take-aways

- Performance and scaling opportunities
- How to harden Linux NFS/RDMA
- Moving forward together
Why NFS/RDMA?

• NFS on IPoIB works in Linux, but
 • Significant client-side resource requirements
 • Does not approach link speed

• Permanent storage advances
 • Better, larger caches
 • Persistent memory replacing spinning rust

• *Can NFS/RDMA deliver better reliability, performance, and efficiency?*
Known Implementations

- Linux NFS/RDMA is unmaintained
 - Enterprise distros may support NFS client
 - But upstream, client is now broken
 - Upstream Linux NFS/RDMA server has known panics

- Oracle Solaris 11 NFS/RDMA client and server
 - Actively supported and stable
 - No non-IB RDMA transports
Known Implementations

- Red Hat GlusterFS 3.2 server and client
 - No commercial support
 - NFSv3 only

- NFS-Ganesha server
 - 9p/RDMA, no NFS/RDMA

- Others?
Test Environment

• Hardware
 • 32GB, 6-core single socket, x86-64
 • Single ConnectX-2 QDR

• Software
 • NFS client: Linux 3.8.13 with NFS patches
 • NFS server: Solaris 11 update 1

• Switch
 • QDR InfiniBand
Functional Testing

- NFS functional tests
 - Basic functions - cthon04
 - Interoperability - cthon04, NFStests
 - IPv4/IPv6, endianness
 - Fuzz testing - xfstests

- Challenges:
 - Alternate memory registration modes
 - Common and uncommon HCAs and transports
Performance Testing

- Workload is IOzone
 - NFS share on tmpfs
 - Direct I/O
 - NUMA is disabled

- Metrics
 - Bandwidth
 - Round-trip latency
 - CPU efficiency
 - Interrupt load
Figure 1

Single Reader IOzone Throught

mount wsize, rsize=256K

Throughput (GB/s) vs. record length (KB)

- TCP v3
- TCP v4
- RDMA v3
- RDMA v4
Figure 2

12 readers IOzone CPU utilization

`mount wsize,rsize=256K`

CPU utilization percentage (%) vs. record length (KB)

- TCP v3
- TCP v4
- RDMA v3
- RDMA v4
Figure 3

12 readers IOzone Throughput

mount wrize,rsize=256K

![Graph showing throughput over different record lengths for TCP v3, TCP v4, RDMA v3, and RDMA v4.](image-url)
Performance Opportunities

- Low-hanging fruit
 - Code path length and lock contention analysis
 - Larger maximum rsize and wsize
 - Interrupt mitigation

- Longer term
 - Multiple QPs per RPC transport instance
 - Predictable latency (NUMA)
 - New HCA capabilities
Potential NFS/RDMA Features

- NFSv4.1 - backchannel, pNFS
- NFSv4 referral and FedFS support
- Virtualization - containers, Xen, KVM, qemu
Potential Transport Features

- Alternate transports
 - InfiniBand
 - Legacy HCAs like mthca
 - Current and newer
 - iWARP
 - RoCE

- Connection and NFS server failure handling
Managing the Test Matrix

• Linux NFS/RDMA supports seven memory registration modes
 • Multiplies implementation complexity
 • Introduces administrative complexity
 • Test coverage challenges

• Possible solutions:
 • Remove some memory registration modes
 • Deprecate support for older HCAs
Observability Challenges

- Usual approaches for NFS field troubleshooting:
 - Capture and analyze wire traffic
 - Add code probes

- For NFS/RDMA:
 - ibdump works only for Mellanox HCAs
 - Analysis tools don’t yet dissect RPC/RDMA
 - Code probe bandwidth may be limited
Standards Work

- RFCs 5666 and 5667 (Talpey/Callaghan, 2010)
 - Implementation experience

- Potential protocol enhancements
 - Feature negotiation
 - More efficient READDIR
 - Allow more than one READ chunk per RPC
Opportunities To Contribute

• Continuous testing resources
• Observability tools
• Features, bug fixes
• Flush existing patches to upstream
• Support for upstream Linux NFS/RDMA server
Open Discussion
Appendix
Figure 4

Per CPU Reader Throughput

mount wsize, rsize=256K

![Graph showing per CPU throughput for different record lengths and network protocols](image-url)
Figure 5

Single Reader Round Trip Time

mount wrize, rsize=256K

record length (KB)

round trip time (million secs)