IB Monitoring Through the Console

Jesse Martinez
Los Alamos National Laboratory
LA-UR-14-21958

April 3rd, 2013
Outline

● Monitoring Methods
 ○ Errors
 ○ Performance
● Use of Console
● Analysis and Reporting
● Future Implementations
Monitoring at LANL

- Monitoring is done per each cluster’s fabric
 - Range from 8 node to 1600 node clusters
 - DDR, QDR, FDR systems
 - OpenSM 3.3.6 to 3.3.16-1

- Monitoring at near real time:
 - Fabric Errors
 - Non Optimal Links
 - Performance Issues
 - Bandwidth and Latency (Susan Coulter)
 - Throughput
IBMon2

- Developed by Susan Coulter
- Suite of scripts designed to look for InfiniBand hardware errors as well as performance metrics
- Runs off master nodes for each cluster
 - Where subnet manager is located
- Forwards messages to both Zenoss and Splunk
- Thresholds are set to trigger fabric errors and performance issues to send to operators and system administrators
Error Monitoring Methods

- Subnet Manager gathers counters from IB fabric continuously
- Scripts written to gather this data and convert it to readable format
 - Local Device: [Error == Counter] - (Remote Device)
- Error counters reset every half hour
 - Allows to monitor errors at near real time
 - Automatically disabled during Dedicated Service Time (DST)
- Errors messages recorded in syslog for each fabric
Performance Monitoring Methods

- Scripts written to gather transmit and receive data from ports throughout fabric
 - Recalculates actual data across 4 links and converts to MB
- Performance counters reset every half hour
- Throughput calculated based on transmit and receive data
 - Converts performance counters to Average MB/s
 - MB/30 minutes \rightarrow \simMB/s
- Can look at overall cluster or port usage every half hour
Counters through Console

- Before: `ibqueryerrors` calls
 - Used before to gather errors and congestion counters on the fabric and modified by scripts
- OpenSM console used now to dump fabric counters via `PerfMgr` every half hour
 - Allows counters to be gathered continuously over fabric without additional calls from our scripts
 - Scripts parse dump file for information to gather error and performance counters
 - Calculations done on master nodes
Console Output

OpenSM $ help
Supported commands and syntax:
help [command]
quit (not valid in local mode; use ctrl-c)
loglevel [log-level]
permodlog
priority [sm-priority]
resweep [heavy|light]
reroute
sweep [on|off]
status [loop]
logflush -- flush the opensm.log file
querylid lid -- print internal information about the lid specified
portstatus [ca|switch|router]
switchbalance [verbose] [guid]
lidbalance [switchguid]
dump_conf
update_desc
version -- print the OSM version
perfmgr(pm) [enable]disable
 |clear_counters|dump_counters|print_counters(pc)|print_errors(pe)
 |set_rm_nodes|clear_rm_nodes|clear_inactive
 |dump_redir|clear_redir
 |sweep|sweep_time(seconds)]
dump_portguid [file filename] regexp1 [regexp2 [regexp3 ...]] -- Dump port GUID matching a regexp

OpenSM $
Monitoring through Console

- Scripts search over all ports on hardware through dump file (Spine/Line cards, HCAs)
 - Locate at /var/log/opensm_port_counters.log
- Grep for non zero counters for errors
 - SymbolErrors, PortRcv, LinkedDowned, etc.
- Use source device/port to find remote device/port
 - Through ibnetdiscover parse
- Gathers performance metrics per port
- Sends error events to syslog and Zenoss
- Stores performance numbers in file (read by Splunk)
"mu1456" 0x2c9000100d050 active TRUE port 1

Last Reset : Wed Mar 26 16:03:03 2014
Last Error Update : Wed Mar 26 16:30:03 2014
symbol_err_cnt : 0
link_err_recover : 0
link_downed : 0
rcv_err : 0
rcv_rem_phys_err : 0
rcv_switch_relay_err : 0
xmit_discards : 0
xmit_constraint_err : 0
rcv_constraint_err : 0
link_integrity_err : 0
buf_overrun_err : 0
vl15_dropped : 0
Last Data Update : Wed Mar 26 16:30:03 2014
xmit_data : 141965786566 (528.864GB)
rcv_data : 142302013218 (530.116GB)
xmit_pkts : 706078664 (673.369M)
rcv_pkts : 706229268 (673.513M)
unicast_xmit_pkts : 0 (0.000)
unicast_rcv_pkts : 0 (0.000)
multicast_xmit_pkts : 0 (0.000)
multicast_rcv_pkts : 0 (0.000)
Error Analysis and Reporting

- Two methods for monitoring errors
 - Zenoss
 - Splunk
- Why both?
 - Preference
 - Zenoss designed for real time virtualization of clusters to monitor errors
 - IB grid sent to Zenoss for virtualization
 - Automatically clear events
 - Splunk designed for analysis and benchmarking of performance and alerts
Zenoss Example
Splunk Example

IBmon2 Errors by Cluster - Last 7 Days

- cj-master
- lo2-sn
- ml-master
- mp-master
- mu-master
- pi-master
- pi-master
- zo-master

Number of Errors

Time

- Tue Mar 4 2014
- Wed Mar 5
- Thu Mar 6
- Fri Mar 7
- Sat Mar 8

23m ago
Splunk Example

Average IB Throughput by Cluster - Last 7 Days

Time

Average Rate (MB/s)

- conejo
- lightshow
- lobo
- mapache
- moonlight
- mustang
- pinto

UNCLASSIFIED
Future Modifications

- Compatible IBmon2 for InfiniBand fabrics
 - Configuration Standards
 - Different fabric rates
 - Difference organizational implementations
 - Pulling additional counters to look for trends in performance and error analysis
 - PortXmitWait
- Robust design to handle upgrades
Questions?