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Background 



UNH EXS (Extended Sockets) 

https://www.iol.unh.edu/expertise/unh-exs 
 
• Based on ES-API (Extended Sockets API) published by the 

Open Group 
• Extensions to sockets API to provide asynchronous, zero-

copy transfers 
– Memory registration (exs_mregister(), exs_mderegister()) 
– Event queues for completion of asynchronous events 

(exs_qcreate(), exs_qdequeue(), exs_qdelete()) 
– Asynchronous operations (exs_send(), exs_recv(), exs_accept(), 

exs_connect()) 
• UNH EXS supports SOCK SEQPACKET (reliable message-

oriented) and SOCK STREAM (reliable stream-oriented) 
modes 

• No SOCK DGRAM (unreliable datagram) mode (yet) 
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https://www.iol.unh.edu/expertise/unh-exs


Motivation 

• Enable porting UNH EXS to future non-IB fabrics 
• Prepare for future Windows Network Direct port 
• Battle-test implementation of libfabric providers 
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Status of OFI port 

• Successfully runs over OFI verbs provider and 
OFI sockets provider 

• Still some missing functionality (due to missing 
functionality in both providers) 

March 15 – 18, 2015                                               #OFADevWorkshop 6 



#OFADevWorkshop 

Connection Establishment Issues 



EXS Connection Establishment 

• ES-API specifies asynchronous exs_accept() 
and exs_connect() functions 

• How to create a socket not specified by ES-
API—intention was to rely on existing sockets 
API functions 
– socket(), bind(), listen() 

• UNH EXS provides exs_socket(), exs_bind(), 
exs_listen() with same interface as POSIX 
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Server connected socket setup 

POSIX Sockets 
 

struct addrinfo *ai; 

hints.flags = AI_PASSIVE; 

getaddrinfo(name, service, &hints, 
&ai); 

lfd = socket(ai->ai_family, 

             ai->ai_socktype, 

             ai->ai_protocol); 

bind(lfd, ai->ai_addr, ai->ai_addrlen); 

 

listen(lfd, 0); 

 

afd = accept(lfd, &peer_addr, 

             &peer_addrlen); 

UNH EXS 
exs_init(EXS_VERSION1); 
struct addrinfo *ai; 

hints.flags = AI_PASSIVE; 

getaddrinfo(name, service, &hints, 
&ai); 

fd = exs_socket(ai->ai_family, 
                ai->ai_socktype, 

                ai->ai_protocol); 

exs_bind(lfd, ai->ai_addr, 
             ai->ai_addrlen); 

exs_listen(lfd, 0); 
accept_queue = exs_qcreate(n); 

exs_accept(lfd, &av, n, 0, 
           accept_queue); 
/* ... */ 

exs_qdequeue(accept_queue, 
             &events, n, NULL); 
afd = EXS_EVT_NEW_SOCKET(events[m]); 

March 15 – 18, 2015                                               #OFADevWorkshop 9 



Client connected socket setup 

POSIX Sockets 
 
getaddrinfo(name, service, &hints, 

            &ai); 

fd = socket(ai->ai_family, 

            ai->ai_socktype, 

            ai->ai_protocol); 

bind(fd, ai->ai_addr, 

     ai->ai_addrlen); 

 

connect(fd, ai->ai_addr, 

        ai->ai_addrlen); 

UNH EXS 
exs_init(EXS_VERSION1); 
getaddrinfo(name, service, &hints, 

            &ai); 

fd = exs_socket(ai->ai_family, 
                ai->ai_socktype, 

                ai->ai_protocol); 

exs_bind(fd, ai->ai_addr, 
         ai->ai_addrlen); 

connect_queue = exs_qcreate(n); 
exs_connect(fd, ai->ai_addr, 
            ai->ai_addrlen, 0, NULL, 
            connect_queue, &ctx); 
/* ... */ 

exs_qdequeue(connect_queue, 
             &events, n, NULL); 
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POSIX/EXS: getaddrinfo() 

• POSIX-defined function used to perform name 
resolution in protocol-agnostic fashion 
– Not part of original sockets API, came in with IPv6 
– Use of getaddrinfo() is optional in sockets 

• Arguments 
– Node and service strings 
– Hints structure limiting returned entries 

• returns linked list of struct addrinfo 
– Elements of this structure are passed to socket(), bind(), 

and connect() 
– No POSIX/EXS function takes struct addrinfo as input 
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OFI: fi_getinfo() 

• Functionally analogous to POSIX getaddrinfo() and 
verbs rdma_getaddrinfo() 

• Address of local/remote host specified as either: 
– node and service strings 
– src_addr and dst_addr fields of hints structure 

• Returns struct fi_info which is directly passed to 
OFI “constructor” calls 
– Users required to call fi_getinfo() before any other OFI 

function 
– Different from sockets (POSIX and EXS), in which no 

call takes struct addrinfo as a parameter 
• How to deal with this requirement? 
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fi_getinfo(): Obvious Strategy 

• Implement new exs_getaddrinfo() in terms of 
fi_getinfo() 
– Pass arguments directly to fi_getinfo() 
– Embed corresponding struct fi_info in each returned 

struct addrinfo 
– Allows user some limited choice of fabric provider 

• Problem: fi_info structure needed to perform 
exs_listen()/exs_connect() calls, but struct 
addrinfo not passed in 
– Makes this solution untenable without new EXS 

API functions 
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fi_getinfo(): Actual Strategy 

• Call fi_getinfo() within exs_listen() and 
exs_connect() that take sockaddr parameter 

• Pass struct sockaddr via hints to fi_getinfo() 
• fi_info struct stored as part of connection state 
• Disadvantage: hides decision of which fabric 

provider to use from user 
– Current policy is to use first fi_info entry for which 

listen/connect succeeds 
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OFI: Endpoints 

• Listening and connecting sockets both created 
with socket() system call 
– EXS retains this behavior 
– Verbs mimics behavior with rdma_create_id() 

• OFI: Listening (passive) and connecting 
endpoints are completely separate types! (This 
is good API design) 

• Cannot associate socket with OFI endpoint at 
time of exs_socket() call 
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Implementation Issues 



exs_socket() implementation 

Existing Verbs 
conn->channel = 

        rdma_create_event_channel(); 

rdma_create_id(conn->channel, ...); 

return conn->channel->fd; 

Libfabric 
dummy_fd = socket(...); 

conn->hints = fi_allocinfo(); 

/* initialize hints */ 

return dummy_fd; 
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Problem: need a unique fd to return to user 

• RDMA CM event channel and 
cm_id are provider independent 

• Return event channel fd as the fd 
of the socket 

• Event queues and endpoint 
structures provider-dependent 

• Does not allocate any fabric 
resources yet 

• Create dummy socket and return 
its fd 



exs_bind() implementation 

Existing Verbs 
rdma_bind_addr(conn->cm_id, 

               address); 

 

libfabric 
new_conn->hints->src_addrlen 

        = address_len; 

memcpy(new_conn->hints->src_addr, 

       address, address_len); 
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Libfabric implementation does not actually bind socket. 
 
This means that exs_getsockname() on bound but not 
listening/connected socket will not return ephemeral port number—
incompatibility with Linux sockets 



exs_listen() implementation 

Existing Verbs 
 

 

 

 

 

 

 

 

 

 

 

 

rdma_listen(conn->cm_id, backlog); 

libfabric 
fi_getinfo(EXS_FI_VERSION, NULL, NULL, 

           0, &new_conn->hints, 

           &all_info); 

for (auto &info : all_info) { 

    fi_fabric(info->fabric_attr, 

        &new_conn->fabric, new_conn); 

    fi_passive_ep(fabric, info, 

        &new_conn->pep, new_conn); 

    fi_eq_open(fabric, eq_attr, 

         &new_conn->cm_eq, new_conn); 

    fi_pep_bind(new_conn->pep, 

         &new_conn->cm_eq->fid, 0); 

    fi_listen(new_conn->pep); 

    break; 

} 
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exs_connect() implementation 

Existing Verbs 
/* User thread */ 

ret = rdma_resolve_addr(conn->cm_id, 

          address, 2000); 

return ret; 

 

/* EXS internal thread */ 

rdma_get_cm_event(conn->event_channel, 

          &event); 

rdma_resolve_route(conn->cm_id, 2000); 

rdma_get_cm_event(conn->event_channel, 

          &event); 

/* Set up CQ, QP, etc. */ 

rdma_connect(conn->cm_id, ...); 

libfabric 
fi_getinfo(EXS_FI_VERSION, NULL, NULL,  

           0, &new_conn->hints, &info); 

fi_fabric(info->fabric_attr, 

    &new_conn->fabric, new_conn); 

fi_domain(new_conn->fabric, info, 

    &new_conn->domain, new_conn); 

fi_endpoint(new_conn->domain, info, 

    &new_conn->ep, new_conn); 

 

 

 

/* Set up/bind CQ, EQ, etc. */ 

fi_connect(new_conn->ep, 

           info->dest_addr, ...); 
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Connection Establishment: 
Summary of Differences 
• CM event queues 

– Verbs: provider independent 
– OFI: provider-specific 

• Address resolution 
– Verbs: rdma_getaddrinfo optional 
– OFI: fi_info struct required 

• Listening endpoint 
– Verbs: same type as connecting endpoint 
– OFI: listening and connecting endpoint distinct types with distinct 

constructors 
• Client connection establishment 

– Verbs: requires multiple asynchronous operations in sequence 
– OFI: single fi_connect operation 
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Verbs Inline Data vs. 
OFI Injected Data 
• Both copy data into HW memory at post time; 

remove need to register memory 
• OFI Injected data: 

– FI_INJECT flag to fi_sendmsg, fi_writemsg: Behaves 
identically to verbs IBV_SEND_INLINE flag to 
ibv_post_send 

– fi_inject call: Injects data and suppresses 
completion, even if completions were requested for 
all operations! 

– fi_inject call may lead to CQ overrun unless 
application maintains and checks counter on every 
send 
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Write with remote CQ data 

• Verbs: incoming RDMA WRITE with immediate 
data consumes a posted receive WR 
– This makes no sense semantically 

• OFI: optional to consume a posted receive WR 
– If no recv WR consumed, op_context field of 

completion entry will be NULL 
– Missing feature: detect this at initialization time, 

to avoid creating “dummy” buffers/receive work 
requests 

• GitHub: libfabric issue #666 
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fi_shutdown() vs. rdma_disconnect() 

• rdma_disconnect() 
– Transitions QP to error state 
– Flushes all pending WRs to CQ 
– Causes completion event on completion channel 
– In UNH EXS: wakes up completion thread and signals 

connection shutdown 
• fi_shutdown() 

– Behavior for outstanding operations not specified 
– No guaranteed wakeup for thread blocked on 

completion queue 
• EXS Workaround: use timeout on blocking CQ read call 
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Performance 



Performance Tests 

• Using Mellanox ConnectX-3 FDR InfiniBand HCAs 
– Connected via Mellanox SX6036 FDR InfiniBand switch 

• Scientific Linux 6.4 with OFED 3.5-2 
– libibverbs 1.1.7 
– librdmacm 1.0.17 
– libfabric git master 

• OFI verbs provider vs. existing Verbs 
• Message-oriented sockets 
• Tests performed: blast (throughput), ping (latency) 
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Throughput—little difference 
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Latency—big difference 
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Conclusions 



Conclusions 

• Successfully ported UNH EXS to OFI verbs, sockets 
providers 

• Porting UNH EXS uncovered many bugs and 
missing features in providers 

• Revealed some differences between OFI and Verbs: 
– OFI distinguishes between listening and connecting 

endpoints, Verbs doesn’t 
– OFI “constructors” take fi_info as a parameter, Verbs don’t 
– OFI event queues, wait sets, etc. are per-provider, Verbs 

are system-wide 
– OFI received immediate data may or may not consume a 

receive WR, Verbs always does 
– OFI doesn’t guarantee wakeup from blocking EQ/CQ calls 

on connection shutdown, Verbs does 
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Thank You 
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Backup 



UNH EXS Classification 

• Middleware for legacy applications 
• Use of multiple providers (possibly at same time) 
• Limited to reliable connected endpoints for now 
• Required data transfer operations: 

– SEND/RECV (for control messages) 
– RDMA WRITE WITH IMM (for data) 
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Status of OFI port 

• OFI port on separate branch; mainline still uses 
Verbs 
– Plan to merge OFI support into mainline when 

complete 
– OFI (libfabric) or Verbs (libibverbs + librdmacm) will 

be selectable at compile time 
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EXS Data Transfer Protocols 
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exs_send 

User receive 
buffer 

exs_recv User send 
buffer 

sender receiver 

exs_send 

User receive 
buffer 

exs_recv 

User send 
buffer 

sender receiver 
Intermediate 

Receive 
Buffer 

COPY 

Direct Transfer (Message and Stream Sockets) 

Indirect Transfer (Stream sockets only) 



exs_shutdown()/exs_close() 

• We wish to ensure that all messages arrive at 
destination endpoint prior to disconnect 

• Verbs EXS shutdown: EOF message exchange 
– User calls exs_close() 

• Local fd invalidated 
• Returns immediately; completes asynchronously 

– Local endpoint completes outstanding sends 
– Local endpoint sends EOF message 
– On receive EOF, remote endpoint sends EOF reply 
– On receive EOF reply completion, local endpoint calls 

rdma_disconnect() 
– Disconnected CM event fires and all WRs flushed 
– Once socket refcount == 0, close event posted 
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