
Porting UNH EXS from
verbs to OFI
Patrick MacArthur <pmacarth@iol.unh.edu>
UNH InterOperability Laboratory
#OFADevWorkshop

Acknowledgements

The author would like to thank the University of New Hampshire
InterOperability Laboratory for the use of their RDMA cluster for
the development, maintenance, and testing of UNH EXS.

This material is based upon work supported by the National
Science Foundation under Grant No. OCI-1127228 and by the
National Science Foundation Graduate Research Fellowship
Program under award number DGE-0913620.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not
necessarily reflect the views of the National Science Foundation.

March 15 – 18, 2015 #OFADevWorkshop 2

#OFADevWorkshop

Background

UNH EXS (Extended Sockets)

https://www.iol.unh.edu/expertise/unh-exs

• Based on ES-API (Extended Sockets API) published by the

Open Group
• Extensions to sockets API to provide asynchronous, zero-

copy transfers
– Memory registration (exs_mregister(), exs_mderegister())
– Event queues for completion of asynchronous events

(exs_qcreate(), exs_qdequeue(), exs_qdelete())
– Asynchronous operations (exs_send(), exs_recv(), exs_accept(),

exs_connect())
• UNH EXS supports SOCK SEQPACKET (reliable message-

oriented) and SOCK STREAM (reliable stream-oriented)
modes

• No SOCK DGRAM (unreliable datagram) mode (yet)

March 15 – 18, 2015 #OFADevWorkshop 4

https://www.iol.unh.edu/expertise/unh-exs

Motivation

• Enable porting UNH EXS to future non-IB fabrics
• Prepare for future Windows Network Direct port
• Battle-test implementation of libfabric providers

March 15 – 18, 2015 #OFADevWorkshop 5

Status of OFI port

• Successfully runs over OFI verbs provider and
OFI sockets provider

• Still some missing functionality (due to missing
functionality in both providers)

March 15 – 18, 2015 #OFADevWorkshop 6

#OFADevWorkshop

Connection Establishment Issues

EXS Connection Establishment

• ES-API specifies asynchronous exs_accept()
and exs_connect() functions

• How to create a socket not specified by ES-
API—intention was to rely on existing sockets
API functions
– socket(), bind(), listen()

• UNH EXS provides exs_socket(), exs_bind(),
exs_listen() with same interface as POSIX

March 15 – 18, 2015 #OFADevWorkshop 8

Server connected socket setup

POSIX Sockets

struct addrinfo *ai;

hints.flags = AI_PASSIVE;

getaddrinfo(name, service, &hints,
&ai);

lfd = socket(ai->ai_family,

 ai->ai_socktype,

 ai->ai_protocol);

bind(lfd, ai->ai_addr, ai->ai_addrlen);

listen(lfd, 0);

afd = accept(lfd, &peer_addr,

 &peer_addrlen);

UNH EXS
exs_init(EXS_VERSION1);
struct addrinfo *ai;

hints.flags = AI_PASSIVE;

getaddrinfo(name, service, &hints,
&ai);

fd = exs_socket(ai->ai_family,
 ai->ai_socktype,

 ai->ai_protocol);

exs_bind(lfd, ai->ai_addr,
 ai->ai_addrlen);

exs_listen(lfd, 0);
accept_queue = exs_qcreate(n);

exs_accept(lfd, &av, n, 0,
 accept_queue);
/* ... */

exs_qdequeue(accept_queue,
 &events, n, NULL);
afd = EXS_EVT_NEW_SOCKET(events[m]);

March 15 – 18, 2015 #OFADevWorkshop 9

Client connected socket setup

POSIX Sockets

getaddrinfo(name, service, &hints,

 &ai);

fd = socket(ai->ai_family,

 ai->ai_socktype,

 ai->ai_protocol);

bind(fd, ai->ai_addr,

 ai->ai_addrlen);

connect(fd, ai->ai_addr,

 ai->ai_addrlen);

UNH EXS
exs_init(EXS_VERSION1);
getaddrinfo(name, service, &hints,

 &ai);

fd = exs_socket(ai->ai_family,
 ai->ai_socktype,

 ai->ai_protocol);

exs_bind(fd, ai->ai_addr,
 ai->ai_addrlen);

connect_queue = exs_qcreate(n);
exs_connect(fd, ai->ai_addr,
 ai->ai_addrlen, 0, NULL,
 connect_queue, &ctx);
/* ... */

exs_qdequeue(connect_queue,
 &events, n, NULL);

March 15 – 18, 2015 #OFADevWorkshop 10

POSIX/EXS: getaddrinfo()

• POSIX-defined function used to perform name
resolution in protocol-agnostic fashion
– Not part of original sockets API, came in with IPv6
– Use of getaddrinfo() is optional in sockets

• Arguments
– Node and service strings
– Hints structure limiting returned entries

• returns linked list of struct addrinfo
– Elements of this structure are passed to socket(), bind(),

and connect()
– No POSIX/EXS function takes struct addrinfo as input

March 15 – 18, 2015 #OFADevWorkshop 11

OFI: fi_getinfo()

• Functionally analogous to POSIX getaddrinfo() and
verbs rdma_getaddrinfo()

• Address of local/remote host specified as either:
– node and service strings
– src_addr and dst_addr fields of hints structure

• Returns struct fi_info which is directly passed to
OFI “constructor” calls
– Users required to call fi_getinfo() before any other OFI

function
– Different from sockets (POSIX and EXS), in which no

call takes struct addrinfo as a parameter
• How to deal with this requirement?

March 15 – 18, 2015 #OFADevWorkshop 12

fi_getinfo(): Obvious Strategy

• Implement new exs_getaddrinfo() in terms of
fi_getinfo()
– Pass arguments directly to fi_getinfo()
– Embed corresponding struct fi_info in each returned

struct addrinfo
– Allows user some limited choice of fabric provider

• Problem: fi_info structure needed to perform
exs_listen()/exs_connect() calls, but struct
addrinfo not passed in
– Makes this solution untenable without new EXS

API functions

March 15 – 18, 2015 #OFADevWorkshop 13

fi_getinfo(): Actual Strategy

• Call fi_getinfo() within exs_listen() and
exs_connect() that take sockaddr parameter

• Pass struct sockaddr via hints to fi_getinfo()
• fi_info struct stored as part of connection state
• Disadvantage: hides decision of which fabric

provider to use from user
– Current policy is to use first fi_info entry for which

listen/connect succeeds

March 15 – 18, 2015 #OFADevWorkshop 14

OFI: Endpoints

• Listening and connecting sockets both created
with socket() system call
– EXS retains this behavior
– Verbs mimics behavior with rdma_create_id()

• OFI: Listening (passive) and connecting
endpoints are completely separate types! (This
is good API design)

• Cannot associate socket with OFI endpoint at
time of exs_socket() call

March 15 – 18, 2015 #OFADevWorkshop 15

#OFADevWorkshop

Implementation Issues

exs_socket() implementation

Existing Verbs
conn->channel =

 rdma_create_event_channel();

rdma_create_id(conn->channel, ...);

return conn->channel->fd;

Libfabric
dummy_fd = socket(...);

conn->hints = fi_allocinfo();

/* initialize hints */

return dummy_fd;

March 15 – 18, 2015 #OFADevWorkshop 17

Problem: need a unique fd to return to user

• RDMA CM event channel and
cm_id are provider independent

• Return event channel fd as the fd
of the socket

• Event queues and endpoint
structures provider-dependent

• Does not allocate any fabric
resources yet

• Create dummy socket and return
its fd

exs_bind() implementation

Existing Verbs
rdma_bind_addr(conn->cm_id,

 address);

libfabric
new_conn->hints->src_addrlen

 = address_len;

memcpy(new_conn->hints->src_addr,

 address, address_len);

March 15 – 18, 2015 #OFADevWorkshop 18

Libfabric implementation does not actually bind socket.

This means that exs_getsockname() on bound but not
listening/connected socket will not return ephemeral port number—
incompatibility with Linux sockets

exs_listen() implementation

Existing Verbs

rdma_listen(conn->cm_id, backlog);

libfabric
fi_getinfo(EXS_FI_VERSION, NULL, NULL,

 0, &new_conn->hints,

 &all_info);

for (auto &info : all_info) {

 fi_fabric(info->fabric_attr,

 &new_conn->fabric, new_conn);

 fi_passive_ep(fabric, info,

 &new_conn->pep, new_conn);

 fi_eq_open(fabric, eq_attr,

 &new_conn->cm_eq, new_conn);

 fi_pep_bind(new_conn->pep,

 &new_conn->cm_eq->fid, 0);

 fi_listen(new_conn->pep);

 break;

}

March 15 – 18, 2015 #OFADevWorkshop 19

exs_connect() implementation

Existing Verbs
/* User thread */

ret = rdma_resolve_addr(conn->cm_id,

 address, 2000);

return ret;

/* EXS internal thread */

rdma_get_cm_event(conn->event_channel,

 &event);

rdma_resolve_route(conn->cm_id, 2000);

rdma_get_cm_event(conn->event_channel,

 &event);

/* Set up CQ, QP, etc. */

rdma_connect(conn->cm_id, ...);

libfabric
fi_getinfo(EXS_FI_VERSION, NULL, NULL,

 0, &new_conn->hints, &info);

fi_fabric(info->fabric_attr,

 &new_conn->fabric, new_conn);

fi_domain(new_conn->fabric, info,

 &new_conn->domain, new_conn);

fi_endpoint(new_conn->domain, info,

 &new_conn->ep, new_conn);

/* Set up/bind CQ, EQ, etc. */

fi_connect(new_conn->ep,

 info->dest_addr, ...);

March 15 – 18, 2015 #OFADevWorkshop 20

Connection Establishment:
Summary of Differences
• CM event queues

– Verbs: provider independent
– OFI: provider-specific

• Address resolution
– Verbs: rdma_getaddrinfo optional
– OFI: fi_info struct required

• Listening endpoint
– Verbs: same type as connecting endpoint
– OFI: listening and connecting endpoint distinct types with distinct

constructors
• Client connection establishment

– Verbs: requires multiple asynchronous operations in sequence
– OFI: single fi_connect operation

March 15 – 18, 2015 #OFADevWorkshop 21

Verbs Inline Data vs.
OFI Injected Data
• Both copy data into HW memory at post time;

remove need to register memory
• OFI Injected data:

– FI_INJECT flag to fi_sendmsg, fi_writemsg: Behaves
identically to verbs IBV_SEND_INLINE flag to
ibv_post_send

– fi_inject call: Injects data and suppresses
completion, even if completions were requested for
all operations!

– fi_inject call may lead to CQ overrun unless
application maintains and checks counter on every
send

March 15 – 18, 2015 #OFADevWorkshop 22

Write with remote CQ data

• Verbs: incoming RDMA WRITE with immediate
data consumes a posted receive WR
– This makes no sense semantically

• OFI: optional to consume a posted receive WR
– If no recv WR consumed, op_context field of

completion entry will be NULL
– Missing feature: detect this at initialization time,

to avoid creating “dummy” buffers/receive work
requests

• GitHub: libfabric issue #666

March 15 – 18, 2015 #OFADevWorkshop 23

fi_shutdown() vs. rdma_disconnect()

• rdma_disconnect()
– Transitions QP to error state
– Flushes all pending WRs to CQ
– Causes completion event on completion channel
– In UNH EXS: wakes up completion thread and signals

connection shutdown
• fi_shutdown()

– Behavior for outstanding operations not specified
– No guaranteed wakeup for thread blocked on

completion queue
• EXS Workaround: use timeout on blocking CQ read call

March 15 – 18, 2015 #OFADevWorkshop 24

#OFADevWorkshop

Performance

Performance Tests

• Using Mellanox ConnectX-3 FDR InfiniBand HCAs
– Connected via Mellanox SX6036 FDR InfiniBand switch

• Scientific Linux 6.4 with OFED 3.5-2
– libibverbs 1.1.7
– librdmacm 1.0.17
– libfabric git master

• OFI verbs provider vs. existing Verbs
• Message-oriented sockets
• Tests performed: blast (throughput), ping (latency)

March 15 – 18, 2015 #OFADevWorkshop 26

Throughput—little difference

March 15 – 18, 2015 #OFADevWorkshop 27

Latency—big difference

#OFADevWorkshop

Conclusions

Conclusions

• Successfully ported UNH EXS to OFI verbs, sockets
providers

• Porting UNH EXS uncovered many bugs and
missing features in providers

• Revealed some differences between OFI and Verbs:
– OFI distinguishes between listening and connecting

endpoints, Verbs doesn’t
– OFI “constructors” take fi_info as a parameter, Verbs don’t
– OFI event queues, wait sets, etc. are per-provider, Verbs

are system-wide
– OFI received immediate data may or may not consume a

receive WR, Verbs always does
– OFI doesn’t guarantee wakeup from blocking EQ/CQ calls

on connection shutdown, Verbs does

#OFADevWorkshop

Thank You

#OFADevWorkshop

Backup

UNH EXS Classification

• Middleware for legacy applications
• Use of multiple providers (possibly at same time)
• Limited to reliable connected endpoints for now
• Required data transfer operations:

– SEND/RECV (for control messages)
– RDMA WRITE WITH IMM (for data)

March 15 – 18, 2015 #OFADevWorkshop 33

Status of OFI port

• OFI port on separate branch; mainline still uses
Verbs
– Plan to merge OFI support into mainline when

complete
– OFI (libfabric) or Verbs (libibverbs + librdmacm) will

be selectable at compile time

March 15 – 18, 2015 #OFADevWorkshop 34

EXS Data Transfer Protocols

March 15 – 18, 2015 #OFADevWorkshop 35

exs_send

User receive
buffer

exs_recv User send
buffer

sender receiver

exs_send

User receive
buffer

exs_recv

User send
buffer

sender receiver
Intermediate

Receive
Buffer

COPY

Direct Transfer (Message and Stream Sockets)

Indirect Transfer (Stream sockets only)

exs_shutdown()/exs_close()

• We wish to ensure that all messages arrive at
destination endpoint prior to disconnect

• Verbs EXS shutdown: EOF message exchange
– User calls exs_close()

• Local fd invalidated
• Returns immediately; completes asynchronously

– Local endpoint completes outstanding sends
– Local endpoint sends EOF message
– On receive EOF, remote endpoint sends EOF reply
– On receive EOF reply completion, local endpoint calls

rdma_disconnect()
– Disconnected CM event fires and all WRs flushed
– Once socket refcount == 0, close event posted

March 15 – 18, 2015 #OFADevWorkshop 36

	Porting UNH EXS from verbs to OFI
	Acknowledgements
	Background
	UNH EXS (Extended Sockets)
	Motivation
	Status of OFI port
	Connection Establishment Issues
	EXS Connection Establishment
	Server connected socket setup
	Client connected socket setup
	POSIX/EXS: getaddrinfo()
	OFI: fi_getinfo()
	fi_getinfo(): Obvious Strategy
	fi_getinfo(): Actual Strategy
	OFI: Endpoints
	Implementation Issues
	exs_socket() implementation
	exs_bind() implementation
	exs_listen() implementation
	exs_connect() implementation
	Connection Establishment: Summary of Differences
	Verbs Inline Data vs.�OFI Injected Data
	Write with remote CQ data
	fi_shutdown() vs. rdma_disconnect()
	Performance
	Performance Tests
	Throughput—little difference
	Latency—big difference
	Conclusions
	Conclusions
	Thank You
	Backup
	UNH EXS Classification
	Status of OFI port
	EXS Data Transfer Protocols
	exs_shutdown()/exs_close()

