NVM Express Over Fabrics

Dave Minturn, Intel Corp.

OFADevWorkshop
A primary use case for NVMe PCIe SSDs is in an all flash appliance.

Hundreds or more SSDs may be attached – too many for PCIe based attach scale-out.

Desire best performance and latency from NVMe SSD investment over fabrics like Ethernet with RDMA (iWARP, RoCE), InfiniBand™, and Intel® Omni-Path Architecture.
Realizing Benefit of Next Gen NVM over Fabrics

- PCIe NVMe SSD latency may be < 10 µs with Next Generation NVM
- Using a SCSI-based protocol for remote NVMe access adds over 100 µs* in latency
- Usage models require efficient write mirroring of PCIe Next Gen NVMe SSDs over fabrics

*Source: Intel measurements.

Concern: Low latency of Next Gen NVM lost in (SCSI) translation.
Why NVMe over Fabrics?

Simplicity, Efficiency and End-to-End NVMe Model

- Simplicity of protocol enables hardware automated I/O Queues – NVMe transport bridge
- No translation to or from another protocol like SCSI (in firmware/software)
- Inherent parallelism of NVMe multiple I/O Queues is exposed to the host
- NVMe commands and structures are transferred end-to-end
- Maintains the NVMe architecture across a range of fabric types
- Maintains architecture and software consistency between fabric types by standardizing a common abstraction and encapsulation definition

Performance Goal:
Make remote NVMe access over fabrics equivalent to local PCIe attached NVMe, within ~ 10 µs latency.
End-to-End NVMe over Fabrics

Extend efficiency of NVMe over Front and Back-end Fabrics
Enables efficient NVMe end-to-end model (Host<->NVMe PCIe SSD)
NVMe over Fabrics Architecture
(Standard in definition within nvmexpress.org)

• Maintains a consistent NVMe Host-Controller Architecture Model across all fabric types
 • Common NVMe command set
 • NVMe Multi-queue model
• Transport abstraction layer that enables NVMe over multiple fabric types
 • Fabric agnostic NVMe command and completion encapsulation
 • Fabric-oriented NVMe command data buffer descriptors
• Non-PCIe fabric definitions
 • RDMA family fabrics; Ethernet RDMA (iWARP and RoCE) and InfiniBand™
 • NVMe over Fibre Channel proposed in T11.org

Diagram:
- NVMe Host
- NVMe Host Side Transport Abstraction
 - NVMe PCIe Host Software
 - NVMe RDMA Host SW
 - NVMe Future Fabric Host SW
- PCIe Fabric
- RDMA Fabric(s)
- Future Fabric
- PCIe Function
- RDMA Target
- Future Fabric Target
- NVMe PCIe I/F
- NVMe RDMA I/F
- Future Fabric I/F
- NVMe Controller Side Transport Abstraction
- NVMe Subsystem Controller
NVMe Architecture is not just for PCIe

Version 1.2 NVMe Architecture definition is already well suited for non-PCIe Fabric configurations

- **NVM Subsystem Architecture**
 - Multiple NVMe Controllers and fabric ports
 - Multi-path I/O and multi-host support

- **NVMe Namespace Architecture (Pool of logical blocks)**
 - Multiple namespaces per NVM subsystem
 - Can be shared by multiple NVMe Controllers
 - Namespace management
 - Namespace reservations

- **NVMe Controller multi-queue host interface**
 - Administrative and multi-IO queue model
 - Simple command set, optimized for NVM
 - SGL based host and controller buffer descriptors
NVMe Multi-Queue Host Interface

NVMe multi-queue interface maps nicely onto multi-queue enabled high-performance fabrics such as the RDMA queue pair model

- NVMe Submission and Completion Queues are aligned to CPU cores
- No inter-CPU software locks
- Per CQ MSI-X interrupts enable source core interrupt steering

NVMe over Fabrics retains the NVMe host interface model for host software efficiency and consistency

(*Possible RDMA QP mapping shown)
NVMe over Fabric Target

- Exposes NVMe Subsystems to hosts on Front-End NVMe fabric
- Bridges to Back-End NVMe Subsystems (PCIe SSDs)
- NVMe over Fabric Targets are implementation specific
 - Server software based target implementations
 - Single/multiple drive device based target implementations
NVMe over RDMA Fabrics

(*Standard in definition within nvmexpress.org)

NVMe over RDMA Fabric
- Upper Level RDMA Block Storage Protocol
- Layered over a common set of RDMA Verbs
- Imperative to support all RDMA provider types
 - Infiniband™
 - Ethernet (iWARP and RoCE)
NVM Express over Fabrics concept shown at Intel Development Forum 2014

NVM Express over 40GbE iWARP RDMA

- Recall: Goal is remote NVM Express (NVMe) equivalent to local NVMe, up to 10 µs added latency
- Prototype delivers 450K IOPs for both the local and remote NVMe PCIe devices
- Remote NVMe adds 8 µs latency versus local NVMe access
- Demonstrates the efficiency of NVMe End2End NVMe Target software running on one CPU core (two SMT threads) at 20% Utilization

NVMe over Fabrics Standard in Definition
Get involved through NVM Express Org.

NVMe over Fabrics Subsystem Target

- Host System
 - FIO Test Application (Local NVMe IOPS)
 - FIO Test Application (Remote NVMe IOPS)
 - NVMe Host Software (Common)
 - NVMe PCIe SSD (Intel P3700™)
 - Transport Abstraction
 - RDMA Transport
 - RDMA Fabric (40G Ethernet iWARP RDMA)
 - NVMe over Fabrics Subsystem Target
 - Transport Abstraction
 - NVMe Controller Software
 - NVMe Transport Bridge
 - NVMe PCIe SSD (Intel P3700™)

Intel i7-4790 3.6GHz Processors, 8GB DDR-1600, Gigabyte GA-Z97X-UD7 MB, Intel P3700 800G SSDs, Chelsio T580-CR 40GbE iWARP NIC, RHEL7 Linux, OFED 3.2 Software, FIO V2.1.10. Source: Intel. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark® and MobileMark®, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.
Questions?
Thank You

#OFADevWorkshop